arxiv笔记190423

Deep Anchored Convolutional Neural Network

文章地址
一篇思路清奇的论文,其来源是参数量增加与性能提升不成比例。通过将同一个卷积核不停堆叠,大幅度减少参数量。文章首先从只有一个卷积核开始,然后变成每一个stage一个卷积核,之后再加上skip连接和1x1的regulator。

最后的成型模型的话是可以与剪枝算法相比肩的。但是只用一个卷积核居然也能有40%的error rate真的令人震惊。(如果不加BN是会直接崩的)此文把深度与参数量两个问题分开讨论,分析上我觉得很有意义。但是这个方法的话感觉只能解决模型大小的问题,不能解决运算速度的问题,这是相比于其他的模型压缩算法的一大弱势。
实验表格
模型效率图

An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection

文章地址
首先,DenseNet用更少的参数与Flops而性能比ResNet更好,主要是因为concat比add能保留更多的信息。但是,实际上DenseNet却比ResNet要慢且消耗更多资源。本文里面提到了一些ShuffleNetV2已经提到的点,如输入输出通道数相同可以减少MAC,而1x1的卷积影响了并行性。

首先利用OSA模型,就是每一层都只skip到最后的final layer,这样每层输入输出一样能更减少MAC,然后里面采用少量的大通道数卷积,这样效率上会高点。

感觉这篇好像没讲啥。

Bounding Box Regression with Uncertainty for Accurate Object Detection (CVPR19)

文章地址
这个论文的思想来源大约是目前的检测算法更多在意分类的confidence,包括NMS的时候用的也是confidence而不是对回归框的置信度。所以额外预测一个回归框的confidence然后利用其进行NMS。以往的话有一个softNMS利用IoU来得出最后的box,这篇文章的话就利用IoU和预测的偏差共同来投票平均一个回归框。
在这里插入图片描述
在这里插入图片描述
那么又怎么得到这个置信度呢?把网络的输出从一个确定的参数化坐标 x 1 , y 1 , x 2 , y 2 x_1, y_1, x_2, y_2 x1,y1,x2,y2变为预测每个值的分布,为方便起见可以认为是预测四个一维正态分布,其均值就是预测的坐标,而方差就是不确定度。理论上ground truth是一个冲激函数的分布。用两个分布的KL散度就可以当作这个分布与ground truth分布的损失。
在这里插入图片描述
看结果的话,首先,只是把loss改成分布的KL散度就可以提升0.9个点,而后,加上var-voting和soft-max之后可以提升1.8个点,其中在AP90、AP80等高定位精度指标上提升更为明显。
在这里插入图片描述
这篇文章可以说对NMS的改进是有理有据的,使box的准确性对NMS产生影响。然而,本文在一开始提出了关于ground truth的不确定性与模糊性,但是最后的算法依然是将标注当成正确、确定的target,没有解决这个问题。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值