模型 贝叶斯定理/思维(通俗解读)

说明:系列文章 分享 模型,了解更多👉 模型_思维模型目录。概率更新,智慧推断。


1 贝叶斯定理(思维)的应用

1.1 贝叶斯定理应用之在AI中领域中文本分类

说明:考虑到看文章的伙伴很多没有学过人工智能(AI)和Python的,以及因AI涉及到很多术语和专业名词,因此这里弱化了一些准确性,尽可能用通俗易懂的语言来表达。

背景信息说明:

想象一下,你有一个巨大的新闻文章图书馆,每篇文章都已经被归类到了不同的类别,比如“政治”、“体育”或“娱乐”。现在,假设你拿到了一些新的文章,但是这些文章没有标签,你需要决定它们应该放在图书馆的哪个部分。

接下来我们要使用一个工具来做这件事情,这个工具叫做魔法工具-贝叶斯分类器它可以帮助我们决定这些文章的分类。这个工具的魔法基于一个叫做“贝叶斯定理”的古老智慧,它可以帮助我们根据已知的信息来做出猜测。那么如何使用这个魔法工具呢?流程如下:

  1. 了解你的图书馆:首先,我们需要看看图书馆中已有的标签文章,了解每个类别中常见的词汇。

  2. 制作单词卡片:接着,我们将每篇文章分解成单词,并制作成卡片,每个卡片上写一个单词,这样我们就可以看到每篇文章由哪些单词组成。

  3. 统计每个类别的单词:然后,我们统计在每个类别中,每个单词出现的次数,这样我们就可以知道哪些单词是某个类别的常见词。

  4. 用魔法做出分类:当我们拿到一篇新文章时,我们数一数这篇文章中每个单词出现的次数,然后使用我们的魔法工具(贝叶斯定理)来计算这篇文章最有可能属于哪个类别。

假设我们有一篇新文章说:“球进了!我们赢了比赛!”我们数一数这篇文章中的单词,比如“球”、“赢了”、“比赛”,然后我们的魔法工具会告诉我们,这些词在“体育”类别中很常见,所以这篇文章很可能属于“体育”类别。

接下来,我们开始进行结果检验。我们可以通过比较我们的魔法工具的猜测和实际的标签来检查它的准确性。如果我们的魔法工具大多数时候都是正确的,那我们就可以说它做得很好。

这个魔法工具不仅可以用于图书馆的新闻文章分类,还可以用于其他很多地方,比如帮助我们识别垃圾邮件,或者在网上推荐我们可能会喜欢的商品。

通过这个故事,我们希望传达贝叶斯方法在文本分类中的基本概念:通过分析已知信息(图书馆中的文章),我们可以对未知情况(新文章的分类)做出有根据的猜测。这种方法在现实世界中有广泛的应用,并且可以被编程实现,即使没有直接的监督或指导。

最后 我们也说明下贝叶斯定理在人工智能领域的地位:实际上贝叶斯定理在AI领域中中扮演着核心角色,它不仅为机器学习算法提供了理论基础,还广泛应用于自然语言处理、图像识别、推荐系统等多种智能应用。通过概率推理和参数更新,贝叶斯方法帮助机器更好地理解和模拟人类的认知过程,推动了AI在模拟智能行为和处理复杂问题方面的进步。同时,它还在解决大数据挑战、推动深度学习和其他新兴技术发展中发挥着重要作用,是连接认知科学与人工智能的桥梁。

1.2 贝叶斯定理应用之垃圾邮件过滤

垃圾邮件是指未经请求、发送给大量用户的广告或恶意邮件。它们不仅浪费收件人的时间,还可能包含病毒或诈骗信息。因此,有效地过滤垃圾邮件对于保护用户和提高电子邮件系统的效率至关重要。

贝叶斯定理在这里的应用是通过分析邮件内容来预测邮件是否为垃圾邮件。具体步骤如下:

  1. 数据收集:收集大量已知的垃圾邮件和非垃圾邮件样本。

  2. 特征提取:从这些邮件中提取特征,通常是词汇或短语的出现频率。

  3. 训练模型:使用贝叶斯定理计算每个词汇或短语在垃圾邮件中出现的条件概率。

  4. 邮件分类:当收到新邮件时,计算邮件中每个特征词汇的出现频率,并使用贝叶斯定理计算邮件是垃圾邮件的后验概率。

  5. 决策:根据后验概率的阈值决定邮件是否为垃圾

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图王大胜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值