目录
1.内容介绍
2.部分代码
3.实验结果
4.内容获取
1内容介绍
野马优化算法(Wild Horse Optimizer, WHO)是一种基于野马群行为的新型元启发式优化算法。该算法通过模拟野马在自然环境中的觅食、迁徙和社交活动来指导搜索过程,旨在高效地探索和开发解空间,寻找全局最优解。WHO算法特别注重群体间的协作和竞争关系,能够有效地避免早熟收敛,适用于解决多模态和高维优化问题。
随机森林(Random Forest, RF)作为一种强大的集成学习方法,通过构建多个决策树并整合它们的预测结果来提高模型的准确性和鲁棒性。每棵树都是从原始数据集的随机样本和特征子集中训练得到的,这不仅有助于减少过拟合现象,还使得RF能够处理高维数据,并提供特征重要性的评估。
将WHO应用于RF的超参数优化,可以自动搜索最佳的树数量、特征选择比例、最大深度等关键参数,从而提升RF模型的性能。WHO-RF组合不仅提高了模型的泛化能力,还简化了调参流程,减少了人为干预的必要性。然而,这种方法可能会增加计算成本,特别是在处理大规模数据集时需要更多的计算资源和时间。
尽管存在这些挑战,WHO-RF已经在多个领域展现了其潜力,包括金融预测、医疗诊断、环境监测和工程设计等,为解决实际问题提供了新的技术和解决方案。
2部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc