docker搭建dify实操、使用

操作日期:2024-8-26 linux操作系统 dify最新版本0.7.1

拉取代码

git clone --depth 1 https://github.com/langgenius/dify.git

docker部署

cd dify/docker
cp .env.example .env
docker compose up -d   如报错找不到命令则用 docker-compose up -d

注意:我自己本地已经有一个80端口的进程了,而这个dify里面的nginx默认也是80,这里给它改成180,不改的话,直接跳过改步骤

sudo vim .env

将里面的EXPOSE_NGINX_PORT默认80改成180,然后保存

sudo vim docker-compose.yaml

将里面的EXPOSE_NGINX_PORT默认80改成180,然后保存

部署后,docker ps查看结果如下
image.png
包括 3 个业务服务 api / worker / web,以及 6 个基础组件 weaviate / db / redis / nginx / ssrf_proxy / sandbox 。

首次访问安装页面

使用浏览器访问http://your_server_ip:180/install (这里我改为了180,如果没改就是80,不填也行)
image.png
首次访问会出现上面的注册页面,填入信息即可。后续访问,查询到已注册,会自动跳转到登录页面,如下:

<think>好的,我现在需要回答用户关于如何使用Dify搭建图片知识库的问题。首先,我应该回顾用户提供的引用资料,看看有没有相关的信息。根据引用[4],提到Dify可以与Ollama结合使用,特别是当模型支持多模态(如图片理解)时,比如llava模型。这提示搭建图片知识库可能需要配置支持多模态的模型。 接下来,我需要整理步骤。用户可能已经安装Dify和Ollama,但需要确认。引用[4]中提到在Dify中配置Ollama服务地址,并选择支持多模态的模型,比如llava。然后上传图片文件到知识库,可能涉及知识库的创建和文件处理。 另外,引用[5]提到知识库建设的重要性,尤其是处理多样化信息源,这可能包括图片。所以步骤可能包括上传图片、配置模型处理图片、测试和优化。 需要确保用户正确部署了Dify和Ollama,并正确配置模型。同时,可能需要注意网络设置,如Dify的访问地址是否正确,Ollama服务是否可达。此外,测试部分需要验证图片能否被正确解析,比如上传带有图片的问题看是否能得到合理回答。 可能还需要提醒用户,如果遇到问题,可以参考文档或社区资源。比如引用[3]提到通过案例搭建知识库,可能有更详细的指导。 总结步骤应该是:准备环境、配置多模态模型、创建知识库并上传图片、测试应用。需要以清晰的结构呈现,确保用户逐步作。同时,生成相关问题帮助用户进一步了解相关知识。</think>### 如何使用 Dify 搭建图片知识库 以下是基于多模态模型(如 `llava`)和 Dify 平台搭建图片知识库的分步指南: --- #### **1. 环境准备** - **部署 Dify** 使用 Docker 快速部署 Dify,确保服务可通过外网访问(参考引用[3][^3]): ```bash docker run -d --name dify -p 80:80 -v dify-data:/opt/dify/data dify/dify ``` - **安装 Ollama** 本地或服务器部署 Ollama,用于运行多模态模型(如 `llava`),确保服务地址可被 Dify 访问[^4]: ```bash curl -fsSL https://ollama.ai/install.sh | sh ollama run llava ``` --- #### **2. 配置 Dify 连接多模态模型** 1. **登录 Dify 控制台**,进入「模型供应商」设置。 2. **添加 Ollama 服务**: - **模型类型**:选择「对话」 - **模型名称**:填写 `llava` - **基础 URL**:输入 Ollama 服务地址(如 `http://localhost:11434` 或局域网 IP)[^4] - **勾选「支持图片理解」**(多模态选项) --- #### **3. 创建图片知识库** 1. **新建知识库** - 在 Dify 中创建知识库,命名如「图片知识库」。 2. **上传图片文件** - 支持格式:`.jpg`, `.png`, `.pdf`(含图片的 PDF)等。 - 上传后,Dify 会自动调用多模态模型解析图片内容(如 OCR 提取文字、识别物体等)。 3. **配置处理规则**(可选) - 设置图片分块大小、元数据标签,优化检索效果。 --- #### **4. 测试与应用** 1. **构建 AI 应用** - 在 Dify 中创建「对话型应用」,关联「图片知识库」和 `llava` 模型。 2. **测试图片问答** 输入问题如:“描述这张图片中的场景” 或 “提取图片中的文字”,验证模型能否结合知识库内容回答。 3. **部署到外部渠道** 通过 API 或网页嵌入,现手机端、外网访问(参考引用[3][^3])。 --- #### **注意事项** - **模型性能**:多模态模型对硬件要求较高,建议使用 GPU 加速。 - **网络配置**:确保 Dify 与 Ollama 服务在同一网络或可互通。 - **数据安全**:敏感图片建议部署在内网环境。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值