多传感器融合技术概论 基本概念:时空同步,硬/软同步;前融合和后融合的区别
高德车载多传感器融合定位方案:GPS+IMU+MM
融合算法有两个目的:第一,将不同技术的导航信息融合成唯一导航信息,使之可靠性高于未融合前的;第二,估计器件误差(陀螺仪零偏、测速仪尺度误差和导航误差等)。DR算法精度主要取决于IMU(陀螺仪和加速度计)和测速仪的误差,陀螺仪误差将引起位置误差随时间的二次方增长,测速仪误差将引起位置误差随时间线性增长。
IMU误差模型和校准
IMU的误差来主要来自于三部分,包括噪声(Bias and Noise)、尺度因子(Scale Errors)和轴偏差(Axis Misalignments)。
IMU校正以及姿态融合 github开源代码:IMUCalibration-Gesture
自动驾驶系统的传感器标定方法
标定可分成两部分:内参标定和外参标定。内参是决定传感器内部的映射关系,比如摄像头的焦距、偏心和像素横纵比(+畸变系数),而外参是决定传感器和外部某个坐标系的转换关系,比如姿态参数(旋转和平移6自由度)。本文重点讨论不同传感器之间的外参标定,特别是激光雷达和摄像头之间的标定。另外在自动驾驶研发中,GPS/IMU和摄像头或者激光雷达的标定,雷达和摄像头之间的标定也是常见的。不同传感器之间标定最大的问题是如何衡量最佳,因为获取的数据类型不一样,实现标定误差最小化的目标函数会因为不同传感器配对而不同。
三轴陀螺仪
MPU9250从校正到滤波融合
imu_tools的安装与使用 使用imu_tools对IMU进行滤波并可视化
ROS下IMU(LPMS-B2)使用教程
使用Allan标定法标定IMU随机误差;ENU、NED两种坐标系设置;IMU和Lidar联合标定
用imu_utils标定IMU 使用kalibr标定IMU 用imu_utils和imu_tk标定IMU的确定性误差和随机误差
ROS机器人底盘-IMU和里程计融合 (22) (23)对比测试 PIBOT机器人,imu_tools,robot_pose_ekf
[pibot_driver] → /raw_imu(自定义Topic)→ [pibot_imu] → /imu/data_raw(ROS标准格式)→ [imu_tools/complementary_filter_gain_node,过滤噪音] → /imu/data