MOLA:A Modular Optimization Framework for Localization and Mapping. 多元异质传感器数据融合SLAM方案(开源)

MOLA是一个开源的SLAM框架,旨在融合多元异质传感器数据,如2D/3D Lidar、stereo、mono相机等。它提供了模块化的前端、后端和回环检测,支持平滑和批量优化模式。3D Lidar SLAM部分采用多层ICP方法提高效率和准确性。代码和论文已开源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. MOLA简介

1.1 背景

异质sensor的整合到一个SLAM方案中绝非易事,理论层面上的障碍包括不同SLAM系统对于机器人传感器系统、地图的几何描述以及机器人状态描述各不相同。目前的整合方案是图形推理库(graphical inference libraries):g2o, GTSAM, Ceres,这些库常用来做后端。但这同一个完整但SLAM方案还是有gap的。

1.2 目标

MOLA是RSS2019的文章,提出了一个开源的异质数据融合的模块化SLAM系统。这里将前端、后端、回环闭合及其对应的状态都做了封装。这样可以最小化模块之间的依赖,并进行针对性的实现替换。
MOLA模块化实现
上述实现是单进程,每个模块都至少在一个线程中运行,利用shared_ptr<>实现。为方便模块封装,所有模块都来自于一个基类:有标准的生命周期,可以同步的或者按照相应输入事件动态的开启或者悬挂。

模块基类实现

1.3 内容

  1. SLAM有统一的数学框架,独立于pose(SE2,SE3),独立于地图(统一的或者是子图集合)
  2. 独立于地图生成数据源(li
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值