3D Slicer:从入门到精通(七)——图像配准

配准



配准的目标是对齐图像、模型和其他对象在3D空间中的位置和方向。3D Slicer提供了许多配准工具,本页仅列出最常用的工具。

手动配准

任何数据节点(图像、模型、标记等)都可以放置在一个变换下,并且可以在Transforms模块中(使用滑块)或在3D视图中交互式地调整变换。

这种方法的优点是简单,适用于任何数据类型,并且可以非常快速地达到近似对齐。然而,使用这种方法实现精确配准是繁琐且耗时的,因为需要许多微调步骤,并在每次调整后在多个方向进行视觉检查。

半自动配准

配准可以根据在两个对象上指定的对应标记点对自动计算。通常6-8个点就足以进行稳健和精确的刚性配准。

推荐模块:

  • Landmark registration:用于配准稍有错位的图像。支持刚性和变形配准,具有自动局部标记点优化、实时预览和图像比较。
  • Fiducial registration wizard(在SlicerIGT扩展中):用于配准任何数据节点(甚至混合数据,例如图像与模型的配准),以及完全未对齐的图像。支持刚性和变形配准,自动点匹配,从跟踪指针设备自动收集点。参见U-12 SlicerIGT教程以快速了解主要功能。

自动图像配准

灰度图像可以使用基于强度的配准方法自动对齐。如果图像未出现在输入图像选择器中,则很可能是彩色图像,可以使用Vector to scalar volume模块转换为灰度图像。

基于强度的图像配准方法需要合理的初始对齐,通常少于几厘米的平移和少于10-20度的旋转误差。一些配准方法可以执行初始位置对齐(例如,使用重心)和方向对齐(例如,匹配矩)。如果自动对齐不稳健,则可以使用手动或半自动配准方法作为第一步。

强烈建议裁剪输入图像以覆盖大致相同的解剖区域。这可以使配准更快且更稳健。可以使用Crop volume模块裁剪图像。

推荐模块:

分割和二进制图像配准

分割和二进制图像的配准与灰度图像非常不同,因为只有边界可以指导对齐过程。因此,通用图像配准方法不适用于二进制图像。

推荐模块:

模型配准

在包含表面网格的模型配准过程中,只有边界可以指导对齐过程。

上述手动和半自动配准方法适用于模型配准。以下模块推荐用于自动配准:

更多信息

多年来,关于图像配准的信息收集了大量内容,虽然并非完全更新,但仍提供了有用的见解。

  • 配准库:示例案例列表,包含数据集和实现相同结果的步骤。
  • 配准常见问题:与配准和重采样相关的常见问题解答
  • 之前的配准主页:虽然未完全更新,但仍提供了关于配准的有用信息

### 3D Slicer 中的手动操作 #### 使用 Fiducial Registration Wizard 进行手动 为了在 3D Slicer 中执行手动,可以利用 `Fiducial Registration Wizard` 工具。此工具位于 SlicerIGT 扩展中,适用于多种类型的需求。 通过该向导,用户能够轻松地标记并调整不同数据集之间的对应点位置,从而完成精确的过程[^2]。具体来说: - **启动 Fiducial Registration Wizard** 首先加载待的数据源(如 MRI 或 CT 图像)。接着,在模块栏找到并点击 "Fiducial Registration Wizard" 启动向导界面。 - **定义固定和移动数据** 用户需指定哪些数据作为固定的参照物,而其他则被视作需要变换的位置来达到最佳拟合效果。这一步骤对于确保后续步骤中的确性至关重要。 - **放置标记点** 利用鼠标左键单击的方式,在两组图像上相应解剖结构处分别设置一系列特征性的标志点 (fiducials),这些点将指导算法计算最优转换矩阵。 - **应用刚体或变形** 完成上述备工作之后,可以选择合适的模式—无论是简单的平移旋转还是复杂的非线性形变校正,并最终确认提交以查看结果。 ```python # Python脚本示例:创建两个空置的Markups节点用于存储Fiducials fixedLandmarksNode = slicer.mrmlScene.AddNewNodeByClass('vtkMRMLMarkupsFiducialNode', 'Fixed') movingLandmarksNode = slicer.mrmlScene.AddNewNodeByClass('vtkMRMLMarkupsFiducialNode', 'Moving') # 将这两个节点传递给注册向导逻辑对象初始化方法... registrationWizardLogic.setAndObserveTransformableNodes(fixedLandmarksNode, movingLandmarksNode) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

walt3433

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值