凸优化第六章逼近与拟合 6.1范数逼近

本文讨论了凸优化中的范数逼近问题,包括最小二乘、Chebyshev和残差绝对值之和逼近。重点介绍了罚函数逼近,特别是Huber罚函数,它在处理异常值时表现优秀,能平衡拟合质量和稳定性。
摘要由CSDN通过智能技术生成

6.1范数逼近

  1. 基本的范数逼近问题
  2. 罚函数逼近

基本的范数逼近问题

minimize \, \,\begin{Vmatrix}Ax-b \end{Vmatrix}

其中A \in R^{m\times n},m\geq n,且\begin{Vmatrix} \cdot \end{Vmatrix}R^m一种范数。

范数逼近问题的解有时又被称为Ax\approx b在范数\begin{Vmatrix} \cdot \end{Vmatrix}的近似解。

r=Ax-b表示问题的残差。

解释:

(1)几何解释:在A的列空间上找到一个在范数\begin{Vmatrix} \cdot \end{Vmatrix}下离b最近的点。

(2)估计的解释:假设y=Ax+v,y是测量值,v是噪声,x是待估计的参数向量。给定y=b,找到最好的估计值x^*,使得\begin{Vmatrix} Ax^*-b\end{Vmatrix}最小。

(3)设计的解释:x是设计变量,b是期望得到的最好的结果,而Ax是实际的结果,找到最好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值