《数值分析》-- 函数逼近、线性空间、范数、权函数

本文探讨了数值分析中的函数逼近问题,旨在找到计算量最小的近似方法。深入讲解了线性空间的概念,包括线性相关与线性无关,以及范数在衡量元素大小中的作用。同时,介绍了常用的度量标准,如最佳一致逼近和最佳平方逼近,并涉及内积空间和权函数的相关理论。
摘要由CSDN通过智能技术生成


问题

代数插值有缺陷:如龙格现象
在这里插入图片描述
在这里插入图片描述
如何在给定精度下,求出计算量最小的近似式,这就是函数逼近要解决的问题。

  • 函数逼近问题
    在这里插入图片描述

一、线性空间及相关概念

1.1 线性相关 ⭐

设S是数域P上的线性空间,元素 x 1 , . . . , x n ∈ S x_1,...,x_n∈S x1,...,xnS,若存在不全为0的数 a 1 , a 2 , . . . , a n ∈ P a_1,a_2,...,a_n∈P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胜天半月子

打不打商的无所谓,能帮到你就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值