LangChain入门:21.探索使用 Plan and execute 代理

本文详细介绍了LangChain的PlanandExecute代理,一种通过分离规划和执行来处理复杂任务的自动化工具。它通过实例展示了如何安装配置、工作原理以及在实际场景中的应用,预示着人工智能技术的未来发展潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在人工智能领域,LangChain的Plan and Execute代理代表了一种前沿的自动化解决方案,它通过分离规划和执行阶段,为复杂任务的处理提供了一种新颖而有效的途径。本文将深入探讨Plan and Execute代理的工作原理,并通过实际案例展示其应用。

Plan and Execute代理的核心理念

Plan and Execute代理的设计灵感来源于Plan-and-Solve的概念,它强调了任务分解和智能规划的重要性。这种方法将任务分解为更小的、更易于管理的子任务,并通过精确的规划和执行来达成最终目标。

安装与配置

为了开始使用Plan and Execute代理,你需要安装LangChain及其实验扩展包:

pip install -U langchain langchain_experimental
实现代码详解

以下是创建和运行Plan and Execute代理的详细步骤和代码示例:

from langchain_openai import ChatOpenAI
from langchain_experimental.plan_and_execute import PlanAndExecute, load_agent_executor, load_chat_planner
from langchain import SerpAPIWrapper
from langchain.agents.tools import Tool
from langchain import LLMMathChain

# 配置API密钥和基础URL
llm = ChatOpenAI(
    openai_api_key='你的API密钥',  # 请替换为你的OpenAI API密钥
    base_url='https://api.chatanywhere.tech/v1',
    model='gpt-3.5-turbo',
    temperature=0,
)

# 创建工具
search = SerpAPIWrapper(serpapi_api_key='你的API密钥')  # 请替换为你的SerpAPI API密钥
llm_math_chain = LLMMathChain(llm=llm, verbose=True)

# 定义工具列表
tools = [
    Tool(
        name="Search",
        func=search.run,
        description="用于回答关于当前事件的问题"
    ),
    Tool(
        name="Calculator",
        func=llm_math_chain.run,
        description="用于计算或解决问题"
    )
]

# 加载规划器和执行器
planner = load_chat_planner(llm)
executor = load_agent_executor(llm, tools, verbose=True)

# 创建Plan and Execute代理
agent = PlanAndExecute(planner=planner, executor=executor, verbose=True)

# 运行代理解决实际问题
agent.run("在纽约,100美元能买几束玫瑰?")
代理的工作流程

Plan and Execute代理的工作流程包括以下几个关键步骤:

  1. 理解任务:代理首先理解给定的任务和目标。
  2. 规划阶段planner生成一个详细的执行计划,将任务分解为子任务。
  3. 执行阶段executor根据规划结果调用相应的工具来执行子任务。
  4. 结果整合:执行阶段的结果被整合,以达成最终任务目标。
实际应用案例

考虑一个实际场景,比如为即将到来的纽约之旅制定预算。Plan and Execute代理可以规划旅行的各个方面,如住宿、交通、餐饮和娱乐,然后执行具体的查询和计算任务,以提供一个详细的预算报告。

技术细节

Plan and Execute代理的关键在于其规划器和执行器的设计。规划器需要具备强大的推理能力,而执行器则需要能够灵活地调用不同的工具来完成任务。

扩展与未来方向

Plan and Execute代理的概念可以进一步扩展到多模型协作、自适应规划和实时执行反馈等领域。随着人工智能技术的不断进步,未来的代理将更加智能和自动化。
在这里插入图片描述
在这里插入图片描述

结论

Plan and Execute代理是LangChain生态系统中的一个创新工具,它通过智能规划和精确执行,为解决复杂任务提供了一种有效的解决方案。随着人工智能技术的不断发展,这类工具将在科研、商业分析和个人生活中发挥越来越重要的作用。

### LangGraph Plan and Execute 的功能实现 LangGraph 中的 `Plan and Execute` 是一种基于代理模式的设计方案,旨在通过分阶段的方式解决复杂的任务。该设计将整个过程分为 **规划 (Planning)** 和 **执行 (Execution)** 两个主要部分。 #### 核心概念 `Plan and Execute` 的核心在于分离任务的决策制定与具体操作实施。这种分离使得模型能够更专注于每一步的具体目标,从而提高整体效率和准确性[^3]。 #### 创建计划器 以下是创建计划器的关键代码片段及其解释: ```python def create_planner(llm: BaseChatModel, tools: Sequence[BaseTool], base_prompt: ChatPromptTemplate): # 初始化计划器的相关参数 prompt = PromptTemplate.from_template(base_prompt.template) planner = Planner( llm=llm, tools=tools, prompt=prompt ) return planner ``` 上述代码展示了如何初始化一个计划器对象。其中: - 参数 `llm` 表示用于生成自然语言响应的语言模型。 - 参数 `tools` 定义了一系列工具集,这些工具将在后续的任务中被调用。 - 参数 `base_prompt` 提供了一个基础模板,指导模型如何生成合理的行动计划[^1]。 #### 计划步骤的异步执行 在实际运行过程中,计划器会接收输入并返回相应的行动步骤。这一过程通常由以下函数完成: ```python async def plan_step(state: PlanExecute): plan = await planner.ainvoke({"messages": [("user", state["input"])]}) return {"plan": plan.steps} ``` 此代码段实现了异步化的计划生成流程。当接收到用户的输入后,计划器会解析输入内容,并依据预设逻辑生成一系列具体的行动步骤。最终,这些步骤将以结构化数据的形式返回给调用方[^2]。 #### 实际应用场景 为了更好地理解 `Plan and Execute` 的工作方式,可以考虑这样一个场景:假设我们需要开发一款聊天机器人来帮助用户预订餐厅。在这个例子中: - 规划阶段可能涉及分析用户的需求(例如用餐时间、人数偏好等),并将这些需求转化为清晰的操作指令; - 执行阶段则负责联系外部服务提供商,查询可用选项,并向用户提供反馈。 通过这种方式,`Plan and Execute` 不仅简化了复杂任务的管理难度,还增强了系统的灵活性和可扩展性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hugo_Hoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值