DICOM图像参数?
像素:构成图片的小色点。图像每个维度的像素个数——该维度一共有多少个均匀分布的像素点。
分辨率(单位DPI):每英寸(Inch)上像素的数量,即小色点的分布密度,当像素相同时,分辨率越高,即像素点密度越大,实际打印尺寸越小,图片越清晰。
实际尺寸:实际尺寸(英寸)=像素/分辨率; 1英寸=2.54厘米;
像素间隔(Space):图像中两个像素点之间距离代表的实际尺寸大小。
DICOM的宽高一般是按照毫米展示?
DICOM图像的宽高通常是按照毫米展示的。在DICOM文件中,图像的分辨率是以像素为单位的,而像素的大小通常是以毫米为单位的。
因此,DICOM图像的宽高也是以毫米为单位的。在显示DICOM图像时,可以将其转换为厘米或其他单位,但在进行图像处理或分析时,通常需要使用原始的毫米单位。
采集图像时的FOV一般大小是多少?像素间距通过FOV是怎么计算的?
在采集图像时,FOV(视场)的大小通常是根据具体的应用需求和设备参数来确定的。对于医学图像采集,FOV的大小通常是根据病灶的大小和位置,以及设备的成像能力来确定的。
一般来说,FOV的大小应该能够覆盖病灶的整个范围,同时也要考虑到图像的分辨率和信噪比。
像素间距是通过FOV和图像分辨率来计算的。图像分辨率是指每毫米内的像素数量,通常以像素/毫米为单位表示。像素间距是指相邻像素之间的距离,可以通过图像分辨率和FOV来计算:
像素间距 = FOV / 图像分辨率
例如,如果FOV为200毫米,图像分辨率为256像素/毫米,则像素间距为:
像素间距 = 200 / 256 = 0.8毫米
这意味着相邻的像素之间的距离为0.8毫米。
计算图像中两个坐标点的距离?
通过两个坐标点以及x、y的像素间距通过平方根的计算公式获得
直线长度距离 = Math.sqrt((X2 - X1) * (X2 - X1) *nPixelSpacingX*nPixelSpacingX + (Y2 - Y1) * (Y2 - Y1)*nPixelSpacingY*nPixelSpacingY)
其中nPixelSpacingX、nPixelSpacingY为像素间距值。
灰度级别一般有8级、16级、256级等分类
8级灰度级别是最常见的,它的灰度值范围为0到255,其中0表示完全黑色,255表示完全白色。
16级灰度级别的灰度值范围为0到65535,其中0表示完全黑色,65535表示完全白色。
256级灰度级别的灰度值范围为0到255256,其中0表示完全黑色,255256表示完全白色。
位图对象的调色板(ColorPalette)是用于描述位图对象中每个像素的颜色的数据结构
它包含了位图对象中所有颜色的RGB值,以及每个颜色在调色板中的索引。
调色板的作用是用于指定位图对象中每个像素的颜色,并且可以用于快速访问位图对象中的每个颜色。
在位图对象中,每个像素的颜色是由调色板中的颜色决定的。
位图对象的调色板与RGB或ARGB有着密切的关系
在位图对象中,每个像素的颜色是由调色板中的颜色决定的,而调色板中的颜色的RGB值或ARGB值就是决定像素颜色的关键信息。因此,位图对象的调色板可以看作是RGB或ARGB值的集合,它们用于指定位图对象中每个像素的颜色。
特殊字段注释
0028 0100 Bits Allocated 表示DICOM图像中用于表示像素值的位数,通常取值为8、12或16。这个字段定义了图像数据在DICOM文件中所占用的字节数。
0028 0101 Bits Stored 表示DICOM图像中实际存储的位数,即像素值被压缩后所占用的位数。
这个字段的值可能会小于Bits Allocated的值,因为压缩算法会将像素值进行压缩以节省存储空间。因此,Bits Allocated和Bits Stored这两个字段的区别在于,前者描述的是DICOM图像中用于表示像素值的位数,而后者描述的是实际存储的位数。
0028 0102 High Bit 这个元素用于描述存储在医学影像(如CT、MRI等)像素数据中的最高有效位(Most Significant Bit, MSB)位深度信息:High Bit 用来指示像素数据中存储的最大数值的二进制表示中最高位的位置。例如,如果 High Bit 的值是 10,则表示像素数据使用了11位(包括最高位在内),即像素值的有效范围是从第10位到最低位(第0位),共11位。
像素值动态范围:通过 High Bit 与像素位深度的关联,可以推算出像素值的有效范围。若已知总位数(通常由其他DICOM标签如 Bits Stored 提供),则可以根据 High Bit 计算出最小和最大可能的像素值,从而确定图像的动态范围。
数据处理与显示:在进行图像处理、分析或显示时,了解 High Bit 对于正确解释像素值至关重要。例如,在将原始像素数据转换为适合人类视觉观察的灰度或彩色图像时,需要根据 High Bit 和相关标签(如 Window Center 和 Window Width)调整像素值的映射,以确保正确显示图像细节。
0028 0002 Samples Per Pixel 表示DICOM图像中每个像素所包含的样本数。样本数通常为1、2或4。当样本数为1时,表示该图像是单通道图像;当样本数为2或4时,表示该图像是多通道图像。
如果在DICOM图像中,Samples Per Pixel字段的值为3,那么可能是因为该图像采用了一种特殊的颜色表示方式。例如,在一些医学图像应用中,可能会使用三通道的YCbCr颜色空间来表示图像,其中每个像素包含亮度(Y)、色度(Cb)和色度(Cr)三个样本值。在这种情况下,Samples Per Pixel字段的值就会为3。
需要注意的是,当Samples Per Pixel字段的值为3时,并不一定代表该图像是彩色图像,因为三通道的YCbCr颜色空间也可以用于灰度图像的表示。因此,要确定一张DICOM图像是彩色图像还是灰度图像,需要查看其Photometric Interpretation字段的值。
0028 0004 Photometric Interpretation 表示DICOM图像中像素值的表示方式。常见的值有“MONOCHROME1”、“MONOCHROME2”、“RGB”、“YBR_FULL”、“YBR_PARTIAL”等。
其中,“MONOCHROME1”表示图像是单通道灰度图像;“MONOCHROME2”表示图像是双通道灰度图像;“RGB”表示图像是彩色图像,像素值包含红、绿、蓝三种颜色的样本值;
“YBR_FULL”和“YBR_PARTIAL”表示图像是YCbCr颜色空间的图像,
其中“YBR_FULL”表示完整的YCbCr图像,包含亮度(Y)、色度(Cb)和色度(Cr)三个通道的样本值;“YBR_PARTIAL”表示不完整的YCbCr图像,只包含亮度(Y)和色度(Cb)两个通道的样本值。因此,Samples Per Pixel和Photometric Interpretation这两个字段的区别在于,前者描述的是DICOM图像中每个像素所包含的样本数,而后者描述的是像素值的表示方式。
0028 0006 Planar Configuration 主要用于定义了当一个像素由多个样本(通常是彩色图像中的红色、绿色、蓝色通道)组成时,这些样本值在Pixel Data
元素中是如何组织或排列的。具体来说,这个字段的值可以是0或1:
-
当
Planar Configuration
的值为0时,表示像素数据是按照样本顺序交错排列的,即每个像素的所有样本连续存放,形式如RGBRGBRGB...
。这种排列方式也被称为交织(interleaved)格式。 -
当值为1时,则表示像素数据是以平面的方式存储,即所有红色样本紧接着是所有绿色样本,然后是所有蓝色样本,形式如
RRRRR.....GGGGG.....BBBBB.....
。这种排列方式称为非交织(non-interleaved)或平面(planar)格式。
这个字段对于正确解析和显示多通道图像(尤其是彩色图像)至关重要,因为不同的排列方式会影响到如何正确地重组像素的颜色信息。
Modality
标签(0008,0060),它指定了检查所使用的成像模态。以下是几种常见的模态代码:
- CR (Computed Radiography): 计算机X射线摄影
- DX (Digital X-Ray): 数字X射线摄影(包括DR)
- CT (Computed Tomography): 计算机断层扫描
- MR (Magnetic Resonance): 磁共振成像
- US (Ultrasound): 超声波
- MG (Mammography): 乳房X光检查
衍生图像(Derived Image)
通常是指基于原始DICOM图像或者其他图像数据通过特定的后处理算法生成的新图像。这些算法可能包括但不限于:
-
图像重建:例如,在计算机断层扫描(CT)中,原始数据经过重建算法处理产生最终可视化的横断面图像。
-
图像滤波:对图像进行平滑、锐化、噪声去除等处理以改善图像质量或突出某些特征。
-
图像配准:将来自不同时间点、不同序列或不同成像设备的图像精确地对齐在一起,以便进行比较或者生成融合图像。
-
量化测量:如测量体积、密度、血流动力学参数等,并以图像的形式展示结果。
-
增强可视化:比如血管造影中的最大密度投影(MIP)、最小密度投影(MinIP)、表面阴影显示(SSD)等,这些都是从原始三维数据集派生出来的二维图像。
-
定量分析:如PET-CT融合图像,它是将PET的功能代谢信息与CT的解剖结构信息结合在一起形成的衍生图像。
总之,衍生图像不是直接由成像设备捕捉得到的原始图像,而是经过一系列计算和分析过程得到的具有新信息内容或视觉表现形式的图像。
灰度图像的像素值的位数是8,最大像素是255;那么RGB的像素位数也是8,最大像素是多少?
灰度图像的像素值是8位时,每个像素的最大值是255。对于RGB图像,如果每个颜色分量(红、绿、蓝)也是以8位表示,则每个分量同样具有0到255的范围。由于RGB图像包含三个独立的色彩分量(R、G、B),所以一个RGB像素的整体“大小”是这三个分量值之和的三倍。
但需要注意的是,当我们谈论RGB图像的最大像素值时,通常是指每个分量的最大值,而非三个分量之和。这是因为RGB像素不是通过简单相加三个分量值来衡量其大小或亮度的,而是通过这三个分量的不同组合来表示不同的颜色。
因此,对于8位RGB图像:
-
每个颜色分量(红、绿、蓝)的最大值是255。
-
一个RGB像素由三个这样的分量组成,各自独立取值,故一个像素可以表示的色彩范围是:
RGB(0, 0, 0) 到 RGB(255, 255, 255)
其中:
- RGB(0, 0, 0) 表示黑色,所有颜色分量均为最小值(无光)。
- RGB(255, 255, 255) 表示白色,所有颜色分量均为最大值(全光)。
- 在这两个极端之间,有超过 16,777,216 种不同的颜色组合(256 × 256 × 256),它们共同构成了8位RGB色彩空间的所有可能颜色。
综上所述,对于8位RGB图像,每个像素的红色、绿色、蓝色分量的最大值都是255,而一个像素能够表示的最大颜色数量则是上述提到的超过1670万种。这里的“最大像素”应理解为每个分量的最大数值,而非像素整体的一个总和概念。