UFLDL教程Exercise答案(1):Sparse Autoencoder

教程地址:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

Exercise地址:http://deeplearning.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder

代码

实现的时候就尽量没用loop循环,能向量化实现的地方尽量用了向量化实现。

Step 1: Generate training set (sampleIMAGES.m

随机采样1000个图像块

for i=1:numpatches
    r = 0;
    imth = randi([1,10],1);
    patchth1 = randi([1,504],1);
    patchth2 = randi([1,504],1);
    for j = patchth1:(patchth1+7)
        for k = patchth2:(patchth2+7)
            r = r+1;
            patches(r,i)=IMAGES(j,k,imth);
            
        end
    end
    
end

Step 2: Sparse autoencoder objective

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值