图形的栅格化方法(Rasterizing)之二

本文介绍了图形栅格化的几种方法,包括Half-space tests、Jordan Curve Theorem和克劳算法(Crow's Algorithm)。重点讲解了克劳算法,这是一种扫描线算法,通过建立顶点数组并逐行扫描边界来确定像素是否在图形内部,适用于图形填充。文章提供了详细的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果我们不但要扫描图形轮廓,而且要在图形内部填充颜色。基本方法是建立一个最小包围盒(Bounding Box)将图形包住,然后依次扫描盒中的像素,看是否在图形内部,是的话就涂上颜色。下面介绍一些具体方法。

 

Half-space tests

假设有一个三角形,如何确定某个点是否在三角形内部?考虑三角形的三条边,这三条边各自把二维空间分成了两个半面。对三条边各取一个半面,使它们两两互相有交集,其交集就在三角形内。
缺点是不能作用在凹面体上。如果要判断凹面体内部,必须先把它分割成小三角形。

 

Jordan Curve Theorem

假设多边形内部有一个点向某个方向放出一条射线, 若击中多边形的边奇数次,则在内部。否则,就在外部。
有一些具体情况需要讨论。比如射线刚好击中一个顶点,或者划过一条边。此外,当图形是自交错的时候(self - intersection),此方法也会失效。

 

克劳算法 Crow's Algorithm

克劳算法是一种扫描线算法( Scan Line Algorithms )。算法认为1)内点和外点的辨别只需要在图形的边界判定; 2)边界的改变只发生在顶点处。因此,我们只需要建立一个存储顶点的数组,利用顶点来建立边的约束,再逐行在两条边界之间扫描就行了!这种算法具有很好的效果和效率。为了帮助理解,下面给出该算法的全部c++实现:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值