图形的栅格化方法(Rasterizing)之一

本文介绍了图形的栅格化方法,包括使用x方向扫描线的线算法、中点决策法以及反锯齿法。线算法通过直线方程实现,中点决策法避免了浮点运算和round函数,反锯齿法则提高了图像质量。还探讨了如何对闭合图形进行内部栅格化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图形的栅格化方法也叫光栅化方法,它的作用是把图形变成一个个屏幕上的像素从而显示出来。数学上描述图形用的“点”或“线”是没有大小的。而显示器屏幕是一系列像素组成的正交网格,就好像一个个的格子一样。我们需要把这些“点”“线”用格子描述出来,因此把这个过程称作“栅格化”更加贴切。

 

首先介绍栅格化图形线(如一条直线)的方法:

 

线算法
最简单的方法是使用x方向的扫描线。
直线方程为
y (x) = m * x + b
泰勒展开为
y (x + dx) = y (x) + f'(x) * x

假设 -1 < m < 1, x0< x1

这个方法大致有三个缺点:round函数耗费了很多时间; 使用了float这种浮点算法; 有可能出现锯齿(Aliasing)。

 

中点决策法
有一种避免使用round函数和float的方法,称为中点算法(Midpoint Algorithm)。
此算法在直线方程 f (x, y) = a * x + b *

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值