[论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制

[论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制

摘要

本文研究了在水平面内运动的全驱动自主水下机器人的轨迹跟踪问题。在我们的控制设计中考虑了外部干扰、控制输入非线性和模型不确定性。基于离散时间域的动力学模型,两个神经网络(包括一个临界神经网络和一个作用神经网络)被集成到我们的自适应控制设计中。引入临界神经网络来评价设计的控制器在当前时间步长内的长期性能,并利用作用神经网络来补偿未知动态。为了消除水下机器人控制输入的非线性,自适应控制中还设计了补偿项。通过严格的理论分析,证明了该控制律的稳定性和性能。此外,通过大量的数值仿真结果验证了该控制方法的鲁棒性和有效性。

索引术语——自适应控制、自主水下航行器、神经网络、轨迹跟踪。

介绍

目前,水下机器人,包括自主水下机器人(AUV)、遥控潜水器(ROV)和水下滑翔机,已经广泛应用于各种水下任务[1]–[5]。AUV也参与了对海洋、海底和湖泊的科学研究。水下机器人执行水下任务时,精确的运动控制至关重要。然而,这是一个挑战,因为模型的非线性,耦合,时变的水动力系数的动力学,这需要进一步研究。

水下机器人通常以6个自由度在三维空间中运动,其平面运动和潜水运动之间存在耦合动力学。在大多数研究中,水下机器人模型总是解耦的,使得各种控制方法的应用成为可能。已经提出了几种用于在三维空间中跟踪水下机器人轨迹的方法,特别是用于规划运动或潜水。非线性水下机器人模型通常先线性化,然后基于该线性模型设计控制器[8]、[9]。在解耦模型的基础上,文[6]对水下机器人的潜水控制进行了分析,并采用微分器来提高噪声衰减性能,从而实现自抗扰控制。通过解耦深度和航向运动,在[10]中设计了模糊深度局部放电控制器。此外ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值