6--SSD(单发多框检测)

6.1 SSD模型

        如下图所示,此模型主要由基础网络组成,其后是几个多尺度特征块。基本网络用于从输入图像中提取特征,因此它可以使用深度卷积神经网络,一般多用VGG和ResNet。由多尺度锚框知识可知,想要基于特征图得到多个锚框来检测较小的物体,只需要指定特征图输出的高宽较大即可。 接下来的每个多尺度特征块将上一层提供的特征图的高和宽缩小(如减半),并使特征图中每个单元在输入图像上的感受野变得更广阔,即越上层的多尺度特征图较小,适合来检测较大的物体。

6.1.1 预测类别层和边界预测层 

        使用卷积层的通道来输出类别预测。类别预测层使用一个保持输入高和宽的卷积层,这样一来,输出和输入在特征图宽和高上的空间坐标一一对应。 考虑输出和输入同一空间坐标(x、y):输出特征图上(x、y)坐标的通道里包含了以输入特征图(x、y)坐标为中心生成的所有锚框的类别预测,即输出通道数为a(q+1),(a为每个像素拥有的锚框,q个类别+1个背景类)其中索引为i(q+1)+j(0≤j≤q)的通道代表了索引为i的锚框有关类别索引为j的预测。

        边界框预测层,这里需要输出的是每个锚框与真实边框的偏移量,应该是中心点宽高之间的差。

#预测类别层,使用3*3的卷积,填充为1,即输入和输出高宽不变
def cls_predictor(num_inputs, num_anchors, num_classes):
    return nn.Conv2d(num_inputs, num_anchors * (num_classes + 1),
                     kernel_size=3, padding=1)

#边界框预测层 这里需要为每个锚框预测4个偏移量
def bbox_predictor(num_inputs, num_anchors):
    return nn.Conv2d(num_inputs, num_anchors * 4, kernel_size=3, padding=1)

6.1.2 连结多尺度的预测 

         在不同的尺度下,特征图的形状或以同一单元为中心的锚框的数量可能会有所不同。 因此,不同尺度下预测输出的形状可能会有所不同。为同一个小批量构建两个不同比例(Y1Y2)的特征图,其中Y2的高度和宽度是Y1的一半。假设Y1Y2的每个单元分别生成5个和3个锚框,目标类别的数量为10,对于特征图Y1Y2,类别预测输出中的通道数分别为5×(10+1)=55和3×(10+1)=33,其中任一输出的形状是(批量大小,通道数,高度,宽度)。

def forward(x, block):
    return block(x)

Y1 = forward(torch.zeros((2, 8, 20, 20)), cls_predictor(8, 5, 10))
Y2 = forward(torch.zeros((2, 16, 10, 10)), cls_predictor(16, 3, 10))
Y1.shape, Y2.shape

#输出:
(torch.Size([2, 55, 20, 20]), torch.Size([2, 33, 10, 10]))

        将这两个预测输出链接起来以提高计算效率,把这些张量转换为更一致的格式。 因为不同尺度下批量大小仍保持不变,可以将预测结果转成二维的(批量大小,高×宽×通道数)的格式,以方便之后在维度1上的连结。

def flatten_pred(pred):
    return torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)

def concat_preds(preds):
    return torch.cat([flatten_pred(p) for p in preds], dim=1)
concat_preds([Y1, Y2]).shape

#输出:20*20*55+10*10*33 = 25300
torch.Size([2, 25300])

6.1.3 高宽减半块 

         该模块将输入特征图的高度和宽度减半,由两个填充为1的3×3的卷积层、以及步幅为2的2×2最大汇聚层组成。即该模块能扩大每个单元在其输出特征图中的感受野。

MXNET
PYTORCH
def down_sample_blk(in_channels, out_channels):
    blk = []
    for _ in range(2):
        blk.append(nn.Conv2d(in_channels, out_channels,
                             kernel_size=3, padding=1))
        blk.append(nn.BatchNorm2d(out_channels))
        blk.append(nn.ReLU())
        in_channels = out_channels
    blk.append(nn.MaxPool2d(2))
    return nn.Sequential(*blk)

forward(torch.zeros((2, 3, 20, 20)), down_sample_blk(3, 10)).shape

#输出:
torch.Size([2, 10, 10, 10])

6.1.4 基本网络块

        用于从输入图像中抽取特征,这里构造了一个小的基础网络,该网络串联3个高宽减半块,并逐步将通道数翻倍。

def base_net():
    blk = []
    num_filters = [3, 16, 32, 64]
    for i in range(len(num_filters) - 1):
        blk.append(down_sample_blk(num_filters[i], num_filters[i+1]))
    return nn.Sequential(*blk)

forward(torch.zeros((2, 3, 256, 256)), base_net()).shape
#输出:3-16-32-64 256-128-64-32 
torch.Size([2, 64, 32, 32])

6.1.5 完整模型 

         一共由五个模块组成,每个块生成的特征图既用于生成锚框,又用于预测这些锚框的类别和偏移量。在这五个模块中,第一个是基本网络块,第二个到第四个是高和宽减半块,最后一个模块使用全局最大池将高度和宽度都降到1。

#模型组成
def get_blk(i):
    if i == 0:
        blk = base_net()
    elif i == 1:
        blk = down_sample_blk(64, 128)
    elif i == 4:
        blk = nn.AdaptiveMaxPool2d((1,1))
    else:
        blk = down_sample_blk(128, 128)
    return blk

#输出包括:CNN特征图Y;在当前尺度下根据Y生成的锚框;预测的这些锚框的类别和偏移量(基于Y)。
def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):
    Y = blk(X)
    #输出以Y为中心生成的锚框
    anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)
    cls_preds = cls_predictor(Y)
    bbox_preds = bbox_predictor(Y)
    return (Y, anchors, cls_preds, bbox_preds)

        个较接近顶部的多尺度特征块是用于检测较大目标的,因此需要生成更大的锚框。 在上面的前向传播中,在每个多尺度特征块上,通过调用的multibox_prior函数的sizes参数传递两个比例值的列表。 

class TinySSD(nn.Module):
    def __init__(self, num_classes, **kwargs):
        super(TinySSD, self).__init__(**kwargs)
        self.num_classes = num_classes
        idx_to_in_channels = [64, 128, 128, 128, 128]
        for i in range(5):
            # 即赋值语句self.blk_i=get_blk(i)
            setattr(self, f'blk_{i}', get_blk(i))
            setattr(self, f'cls_{i}', cls_predictor(idx_to_in_channels[i],
                                                    num_anchors, num_classes))
            setattr(self, f'bbox_{i}', bbox_predictor(idx_to_in_channels[i],
                                                      num_anchors))

    def forward(self, X):
        anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5
        for i in range(5):
            # getattr(self,'blk_%d'%i)即访问self.blk_i
            X, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(
                X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],
                getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))
        anchors = torch.cat(anchors, dim=1)
        cls_preds = concat_preds(cls_preds)
        cls_preds = cls_preds.reshape(
            cls_preds.shape[0], -1, self.num_classes + 1)
        bbox_preds = concat_preds(bbox_preds)
        return anchors, cls_preds, bbox_preds

#使用该模型对一个256×256像素的小批量图像X执行前向传播。 
net = TinySSD(num_classes=1)
X = torch.zeros((32, 3, 256, 256))
anchors, cls_preds, bbox_preds = net(X)

print('output anchors:', anchors.shape)
print('output class preds:', cls_preds.shape)
print('output bbox preds:', bbox_preds.shape)

#输出:32^2 + 16^2 + 8^2 + 4^2 + 1 = 5444 
#第一层输出高宽为32 第二三四层都是高宽减半 最后一层是全局最大池化层
output anchors: torch.Size([1, 5444, 4])
output class preds: torch.Size([32, 5444, 2])
output bbox preds: torch.Size([32, 21776])

6.2 训练模型 

        使用之前提到的香蕉数据集来对该模型进行训练,其中损失函数有两种类型,第一种有关锚框类别的损失,可以用之前图像分类问题里一直使用的交叉熵损失函数来计算。第二种有关正类锚框偏移量的损失,这里使用L1范数损失,即预测值和真实值之差的绝对值。

        评价函数可以用准确率评价分类结果,由于偏移量使用了L1范数损失,使用平均绝对误差来评价边界框的预测结果。这些预测结果是从生成的锚框及其预测偏移量中获得的。

cls_loss = nn.CrossEntropyLoss(reduction='none')
bbox_loss = nn.L1Loss(reduction='none')

def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
    batch_size, num_classes = cls_preds.shape[0], cls_preds.shape[2]
    cls = cls_loss(cls_preds.reshape(-1, num_classes),
                   cls_labels.reshape(-1)).reshape(batch_size, -1).mean(dim=1)
    # 掩码变量bbox_masks令负类锚框和填充锚框不参与损失的计算。
    #因为背景类的bbox_masks为0
    bbox = bbox_loss(bbox_preds * bbox_masks,
                     bbox_labels * bbox_masks).mean(dim=1)
    return cls + bbox

def cls_eval(cls_preds, cls_labels):
    # 由于类别预测结果放在最后一维,argmax需要指定最后一维。
    return float((cls_preds.argmax(dim=-1).type(
        cls_labels.dtype) == cls_labels).sum())

def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
    return float((torch.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())

        训练模型代码如下:

num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
device, net = d2l.try_gpu(), TinySSD(num_classes=1)
trainer = torch.optim.SGD(net.parameters(), lr=0.2, weight_decay=5e-4)                        legend=['class error', 'bbox mae'])


net = net.to(device)
for epoch in range(num_epochs):
    # 训练精确度的和,训练精确度的和中的示例数
    # 绝对误差的和,绝对误差的和中的示例数
    metric = d2l.Accumulator(4)
    net.train()
    for features, target in train_iter:
        timer.start()
        trainer.zero_grad()
        X, Y = features.to(device), target.to(device)
        # 生成多尺度的锚框,为每个锚框预测类别和偏移量
        anchors, cls_preds, bbox_preds = net(X)
        # 为每个锚框标注类别和偏移量
        bbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors, Y)
        # 根据类别和偏移量的预测和标注值计算损失函数
        l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,
                      bbox_masks)
        l.mean().backward()
        trainer.step()
        metric.add(cls_eval(cls_preds, cls_labels), cls_labels.numel(),
                   bbox_eval(bbox_preds, bbox_labels, bbox_masks),
                   bbox_labels.numel())
    cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]
    animator.add(epoch + 1, (cls_err, bbox_mae))
print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
print(f'{len(train_iter.dataset) / timer.stop():.1f} examples/sec on '
      f'{str(device)}')

 运行结果:

6.3 预测

        使用此模型对图片中的香蕉进行目标检测。

#读取并调整测试图像的大小,然后将其转成卷积层需要的四维格式
X = torchvision.io.read_image('../img/banana.jpg').unsqueeze(0).float()
img = X.squeeze(0).permute(1, 2, 0).long()

#根据锚框及其预测偏移量得到预测边界框。
def predict(X):
    net.eval()
    anchors, cls_preds, bbox_preds = net(X.to(device))
    cls_probs = F.softmax(cls_preds, dim=2).permute(0, 2, 1)
    output = d2l.multibox_detection(cls_probs, bbox_preds, anchors)
    idx = [i for i, row in enumerate(output[0]) if row[0] != -1]
    return output[0, idx]

output = predict(X)

#通过非极大值抑制来移除相似的预测边界框。
def display(img, output, threshold):
    d2l.set_figsize((5, 5))
    fig = d2l.plt.imshow(img)
    for row in output:
        score = float(row[1])
        if score < threshold:
            continue
        h, w = img.shape[0:2]
        bbox = [row[2:6] * torch.tensor((w, h, w, h), device=row.device)]
        d2l.show_bboxes(fig.axes, bbox, '%.2f' % score, 'w')

display(img, output.cpu(), threshold=0.9)

运行结果:

当不对输出图像进行非极大值抑制时的输出,可以看出这里每个物体周围存在很多预测框,这些预测框的置信度并不高。

备注:(把上面的图片进行裁剪后,有的地方出现了0.97的预测框,不知道为啥?对了,这里的图片要是使用png格式会报错,因为png图片是4个通道)

 

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值