求解Ax=b:可解性和解的结构-线性代数课时8(MIT Linear Algebra , Gilbert Strang)

        这是Strang教授的第八讲,上一讲讲了求解Ax=0,也就是求解矩阵的零空间,这节课将讲解求解完整的线性方程组Ax=b,以及它解的各种可能性。

消元法求解Ax=b示例

         上一讲求解了Ax=0,消元法将问题Ax=0转换为Rx=0,R中的自由变量给出了Ax=0的特解。因为右侧变量在消元前后始终为零,所以我们并没有关注右侧变量的变化,上节课中的解x是A的零空间。本节课将要考虑b不等于0的情况,和求解Ax=0不一样,对Ax=b用消元求解,消元的对象是一个增广矩阵[A b],消元的结果是[R d],问题Ax=b转换为求解Rx=d,下面的例子介绍了消元的过程:

        有方程组,

        \begin{matrix} x_1+2x_2+2x_3+2x_4 = b_1 \\ 2x_1+4x_2+6x_3+8x_4=b_2 \\ 3x_1+6x_2+8x_3+10x_4=b_3 \end{matrix}

        对于上面的方程组,它的增广矩阵[A b]和校园过程如下:

        [A ;b]=\begin{bmatrix} 1& 2 & 2 &2 &b_1 \\ 2& 4 & 6 & 8 & b_2\\ 3& 6 & 8 & 10 &b_3 \end{bmatrix}\rightarrow

                       \begin{bmatrix} (1) & 2 &2 &2 &b_1 \\ 0& 0 & (2) & 4 & b_2-2b_1\\ 0& 0 & 2& 4 & b_3-3b_1 \end{bmatrix}\rightarrow

                       \begin{bmatrix} (1) & 2 &2 &2 &b_1 \\ 0& 0 & (2) & 4 & b_2-2b_1\\ 0& 0 & 0& 0 & b_3-b_2-b_1 \end{bmatrix}\rightarrow

                       \begin{bmatrix} (1) & 2 &0&-2 &3b_1-b_2 \\ 0& 0 & (1) & 2 & 0.5b_2-b_1\\ 0& 0 & 0& 0 & b_3-b_2-b_1 \end{bmatrix}=[R ;d]

        那么Rx=d在什么情况下有解呢,答案在不存在主元的行,在例子中只有第三行,第三行的方程式0=b_3-b_2-b_1,只有满足这个等式的b在本例中才有解,我们令上面通式中b=(1,5,6),那么上面的消元结果:

                        \begin{bmatrix} (1) & 2 &0&-2 &-2 \\ 0& 0 & (1) & 2 & 1.5\\ 0& 0 & 0& 0 & 0 \end{bmatrix}=[R ;d]

可解性和解的结构

        上面的例子中介绍了消元的过程并得到了[R d],并且给出了一个特殊的b=(1,5,6)使得方程组有解,那么Ax=b的可解性是怎样的呢,这里用文字总结一下:

         Ax=b有解,当且仅当b属于A的列空间 <=>

         如果A的各行的线性组合得到0向量,那么b中的元素同样的组合得到数0.

         那么,前面的例子中我们已经通过消元得到了Ax=d的简化行阶梯形式[R;d],那么怎样得到Ax=d的全部解呢,或者说Ax=d的结构是怎样的呢?Ax=d的全部解的表达式分为两部分:

         (1). 求得一个特解x_p:设所有的自由变量为0(当然对于实矩阵也可以设置其他任意的实数),求特解Ax_p=b

         (2). 求零空间N(A):x_nAx_n=0.

          Ax=b的所有解表达式:x=x_p+x_n,这就是Ax=b的解的结构,可以验证A(x_p+x_n)=b成立。对于上面的例子我们可以按照上面解的结构求解:

          (1).求特解 x_p,令自由变量x_2=0,x_4=0,得到:

                  \begin{matrix} x_1+2\cdot 0+0x_3+(-2)\cdot 0=-2\\ 0x_1+0\cdot0+x_3+(-2)\cdot0=1.5 \end{matrix}

          通过解上面的方程组得到x_1=-2,x_3=1.5,所以我们求得的特解是:

                  x_p=\begin{bmatrix} -2\\ 0\\ 1.5\\ 0 \end{bmatrix}

        (2).求零空间x_n,上一节已经介绍了求解零空间矩阵N的公式,直接带入,得到:

                N=\begin{bmatrix} -2& 2\\ 1 &0 \\0 & -2\\ 0 & 1 \end{bmatrix}

         所以,x_n表达式如下:

                x_n=x_2\begin{bmatrix} -2\\ 1\\ 0\\ 0 \end{bmatrix}+ x_4\begin{bmatrix} 2\\ 0\\ -2\\ 1 \end{bmatrix}

        (3). 最终的Ax=b的解,表示如下:

                x=\begin{bmatrix} -2\\ 0\\ 1.5\\ 0 \end{bmatrix}+x_2\begin{bmatrix} -2\\ 1\\ 0\\ 0 \end{bmatrix}+ x_4\begin{bmatrix} 2\\ 0\\ -2\\ 1 \end{bmatrix}      

秩r包含解的信息讨论

        对mxn的矩阵A,它的秩r包含了解的所有信息,除了用一堆数字表达的解。前面一节课讲解了矩阵秩的概念,它表明了A的真实大小,它的值等于A的主元的数目,下面讨论一下随着r的不同取值,方程组Ax=b解的情况:

        (1). 列满秩,r=n:

                这时候A没有自由变量. N(A)=0,消元之后的一般表达式:

                R=\begin{bmatrix} I\\ 0 \end{bmatrix}

                Ax=b如果有解(取决于d),只有一个特解,因为N(A)=0.

        (2).行满秩,r=m:

                这时候只有变量有n-r个.N(A)包含n-r个线性无关的向量的线性组合,消元之后的一般表达式:

                R=\begin{bmatrix} I& F \end{bmatrix}

                Ax=b必有多个解.

        (3).即时行满秩,又是列满秩,r=m=n:

                这种情况,是有n个线性无关列向量的方阵,消元之后的一般表达式:

                R=I

                Ax=b有唯一解.

        (4).一般情况,既不是行满秩也不是列满秩,r<m,r<n,消元之后的一般表达式:

                R=\begin{bmatrix} I&F \\ 0 &0 \end{bmatrix}

                Ax=b有0个或无穷多个解.

Ax=b解的几何图像

        教学视频中,教授用上面例子绘制Ax=b的几何图像,它是一个不过平行于Ax=0 不过原点的平面,由于作图不易,这里用书本上另外一个例子来介绍Ax=b的集合图像,这个例子理解起来会更容易,例子:

        \begin{matrix} x+y+z=4\\ x+2y-z=4 \end{matrix}

        上面方程组的解:

        x=x_p+x_n=\begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix}+ x_3\begin{bmatrix} -3\\ 2\\ 1 \end{bmatrix}

        它的零空间是过原点的直线,通过零空间和上面的解的表达式,我们可以画出Ax=b的几何图像如下图:

         

        例子中Ax=b所在的直线是Ax=0的向量子空间所构成的执行经过平移之后的直线,如果Ax=0有多个自由变量,那么Ax=b的解将是一个不过原点的多维平面,这也证明了Ax=b的解不是R^n的向量子空间,因为它不过原点。

        本节课的内容对应《INTRODUCTION TO LINEAR ALGEBRA》3.4章节。

下节课:线性相关性、基、维数-线性代数课时9(MIT Linear Algebra , Gilbert Strang)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值