opencv学习笔记——用C++读取MNIST手写数据库的数据,并用opencv自带的SVM进行识别

本文介绍了如何使用C++和OpenCV读取MNIST手写数字数据库,进行数据转换,并利用OpenCV的SVM进行训练和识别。在训练过程中,讨论了SVM的参数设置以及遇到的问题,包括训练参数的选择和自动训练函数的使用。尽管最终测试结果的错误率较高,但作者提出可能是参数设置的原因,并对比了不同的参数配置。
摘要由CSDN通过智能技术生成

        本文所用的MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员。 测试集(test set) 也是同样比例的手写数字数据。数据库可在 http://yann.lecun.com/exdb/mnist/ 获取, 它包含了四个部分:

train-images-idx3-ubyte: training set images 
train-labels-idx1-ubyte: training set labels 
t10k-images-idx3-ubyte:  test set images 
t10k-labels-idx1-ubyte:  test set labels

其中,训练数据集包含60000幅图片,测试集包含10000幅图片。

1.读取数据集的数据

//mnist.h
#ifndef MNIST_H  
#define MNIST_H
#include <iostream>
#include <string>
#include <fstream>
#include <ctime>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

//小端存储转换
int reverseInt(int i);

//读取image数据集信息
 Mat read_mnist_image(const string fileName);

//读取label数据集信息
 Mat read_mnist_label(const string fileName);
 #endif
大端模式:高位字节放在内存低地址处,低位字节放在内存高地址处; 

小端模式:低位字节放在内存低地址处,高位字节放在内存高地址处;Intel处理器一般为小端模式。

MNIST使用了大端存储模式,因此第一步我们要做的就是大端转小端。

//mnist.cpp
#include "mnist.h"

//计时器
double cost_time;
clock_t start_time;
clock_t end_time;

//测试item个数
int testNum = 10000;

int reverseInt(int i) {
	unsigned char c1, c2, c3, c4;

	c1 = i & 255;
	c2 = (i >> 8) & 255;
	c3 = (i >> 16) & 255;
	c4 = (i >> 24) & 255;

	return ((int)c1 << 24) + ((int)c2 << 16) + ((int)c3 << 8) + c4;
}

Mat read_mnist_image(const string fileName) {
	int magic_number = 0;
	int number_of_images = 0;
	int n_rows = 0;
	int n_cols = 0;

	Mat DataMat;

	ifstream file(fileName, ios::binary);
	if (file.is_open())
	{
		cout << "成功打开图像集 ... \n";

		file.read((char*)&magic_number, sizeof(magic_number));
		file.read((char*)
  • 4
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
#include "stdafx.h" #include"highgui.h" int main(int argc,char* argv[]) { cvNamedWindow( "avi"); CvCapture* capture = cvCreateFileCapture( "D:\\sample.avi"); IplImage* frame; while(1) { frame = cvQueryFrame(capture); if(!frame) break ; cvShowImage( "avi",frame); char c = cvWaitKey(33); if(c == 27) break; } cvReleaseCapture(&capture); cvDestroyWindow( "avi"); return 0; } 结构体 CvCapture CvCapture 是一个结构体,用来保存图像捕获所需要的信息。 opencv提供两种方式从外部捕获图像: 一种是从摄像头中, 一种是通过解码视频得到图像。 两种方式都必须从第一帧开始一帧一帧的按顺序获取,因此每获取一帧后都要保存相应的状态和参数。 比如从视频文件中获取,需要保存视频文件的文件名,相应的解码器类型,下一次如果要 获取将需要解码哪一帧等。 这些信息都保存在CvCapture结构中,每获取一帧后,这些信息 都将被更新,获取下一帧需要将新信息传给获取的 api接口 cvCreateFileCapture(char*name) 通过输入要读取的avi文件的路径,然后,该函数返回一个指向 CvCapture结构体的指针。 cvQueryFrame(capture) 输入一个CvCapture 类型的指针,该函数主要功能是将视频文件的下一帧加载到内存。与 cvLoadImage的不同之处是,该函数不重新分配内存空间。 C=cvWaitKey(33) 当前帧被显示后,等待 33毫秒。如果用户触发了一个按键, c会被设置成这个按键的 ASCII码,否则会被设置成 -1。 cvWaitKey(33) 在此处的另外一个作用是,控制帧率。 cvReleaseCapture(&capture) 释放为 CvCapture结构体开辟的内存空间 关闭打开的 AVI文件相关的文件句柄 读取摄像头 只需把 cvCreateFileCapture 改成cvCreateCameraCapture即可。 该函数的输入参数是一个 ID号,只有存在多个摄像头时才起作用。当 ID=-1时,表示 随机选择一个。 HighGUI做了很多工作,使得摄像机图像序列像一个视频文件一样。 cvCreateFileCapture返回空的问题 ( 1)视频文件路径没写对( 2)没有安装解码器( 3)如果使用的是 Opencv2.0或更高版本,那么,能否正确加载 opencv_ffmpeg210.dll( 4)尽管是 AVI文件,但也可能使用了某种 codec,例如 :MJPEG Decompressor。 需要把它转换 OpenCV支持的 AVI文件 . OpenCV支持的AVI。例如使用狸窝全能视频转换器,在《预置方案》处,选择 AVI-Audio_Video Interleaved(*.avi)。或者使用格式工厂也可以。( 5)读摄像头数据,需要安装与摄像头相应的驱动程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值