偏导数连续、可微、偏导数存在三者之间的关系
注意,以上关系图中均为单向箭头,即全是必要条件(若 p < = q ( p ≠ > q ) p<=q(p≠>q) p<=q(p=>q),则p是q的必要(不充分)条件,如p为矩阵A,B的秩相等,q为A~B(A相似于B),仅能有q推出p,而不能由p推出q,即p存在不一定能推q,但q存在一定能推出p);
其中偏导数连续是最强条件,可以推可微,可以推偏导数存在,可以推连续(连续必然极限存在);
概念回顾
多元函数求极限
除洛必达法则、单调有界准则不能照搬使用外,其他求极限的方法同一元函数求极限的一致。
多元函数求极限的具体例题、系统方法可参考:零蛋大——多元函数求极限方法总结
多元函数连续
即函数 f ( x , y ) 在 ( x 0 , y 0 ) f(x,y)在(x_0,y_0) f(x,y)在(x0,y0)上的极限值等于 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)
偏导数
可微
可微的充分条件(定义式)
可微的必要条件(偏导数存在)
若函数在某点(x,y)处的偏导数不存在,则一定不可微,即偏导数存在不一定能可微,但偏导数不存在一定不可微!
例题
2012 数学一真题:
选项A. 若
f
(
x
,
y
)
f(x,y)
f(x,y)就取分母
∣
x
∣
+
∣
y
∣
|x|+|y|
∣x∣+∣y∣,显然满足极限存在,
但通过偏导数定义法求解 f ( x , y ) f(x,y) f(x,y)的偏导数会出现一元函数中类似 ∣ x ∣ x \frac{|x|}{x} x∣x∣含尖点的情况,
则偏导数是不存在的,故不能推出可微;
带绝对值的函数一般都是不可微的(一元中不可导),在多元函数积分学中这一点也会起到关键作用(当被积函数分母有绝对值,偏导数不存在时,不能利用高斯公式求解二型曲面积分,而只能用转换投影法)
选项C. 若 f ( x , y ) f(x,y) f(x,y)在(0,0)处可微,可以取平面 f ( x , y ) = 1 f(x,y)=1 f(x,y)=1,显然 f ( x , y ) f(x,y) f(x,y)在(0,0)处可微,但选项C的极限为“1/0趋于∞”,极限并不存在;
选项D. 同上;
选项B. 由选项B中的极限,可以推出 f ( 0 , 0 ) = 0 f(0,0)=0 f(0,0)=0( f ( x , y ) f(x,y) f(x,y)必为 无穷小量 x 2 + y 2 趋于 0 无穷小量x^2+y^2趋于0 无穷小量x2+y2趋于0的高阶无穷小),
且可以通过偏导数定义法(公式法)求出 f x ′ ( 0 , 0 ) = f y ′ ( 0 , 0 ) = 0 f_x'(0,0)=f_y'(0,0)=0 fx′(0,0)=fy′(0,0)=0,再代入可微的定义式中,可以证明满足可微的充分条件,故B正确;
但从应试技巧上讲,这已经是当年高数选择题中最难的一道概念题了,不管掌握得是否全面,根据排除法已经能做对这道题了.