目录
1 概述
RNN的输入有两部分,分别是 h(t-1) 以及 x(t) 代表上一时间步的隐层输出,以及此时间步的输入,它们进入RNN结构体后,会"融合"到一起,这种融合我们根据结构解释可知,将二者进行拼接,形成新的张量[x(t), h(t-1)]之后,这个新的张量将通过一个全连接层(线性层),该层使用tanh作为激活函数,最终得到该时间步的输出h(t)。它将作为下一个时间步的输入和 x(t+1) 一起进入结构体,以此类推。
- 什么是RNN模型
- RNN(Recurrent Neural Network)-----循环神经网络,一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。
- RNN的循环机制使模型隐层上一时间步产生的结果,能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响。
- RNN模型的作用
- 因为RNN结构能够很好利用序列之间的关系,因此针对自然界具有连续性的输入序列,如人类的语言、语音等进行很好的处理,广泛应用于NLP领域的各项任务,如文本分类、情感分析、意图识别、机器翻译等。