RNN框架

12 篇文章 5 订阅 ¥9.90 ¥99.00
本文详细介绍了RNN的原理与应用,包括传统RNN、LSTM、Bi-LSTM、GRU以及注意力机制。RNN适用于序列数据,如语言和语音处理,但存在长序列依赖问题。LSTM和GRU通过门控机制缓解这一问题,Bi-LSTM则从双向角度捕获信息。注意力机制进一步提升了模型对关键信息的关注能力。
摘要由CSDN通过智能技术生成

目录

1 概述

2 传统RNN模型

3 LSTM模型

4 Bi-LSTM模型

5 GRU模型

6 注意力机制


1 概述

RNN的输入有两部分,分别是 h(t-1) 以及 x(t) 代表上一时间步的隐层输出,以及此时间步的输入,它们进入RNN结构体后,会"融合"到一起,这种融合我们根据结构解释可知,将二者进行拼接,形成新的张量[x(t), h(t-1)]之后,这个新的张量将通过一个全连接层(线性层),该层使用tanh作为激活函数,最终得到该时间步的输出h(t)。它将作为下一个时间步的输入和 x(t+1) 一起进入结构体,以此类推。

  • 什么是RNN模型
    • RNN(Recurrent Neural Network)-----循环神经网络,一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。
  • RNN的循环机制使模型隐层上一时间步产生的结果,能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响。
  • RNN模型的作用
    • 因为RNN结构能够很好利用序列之间的关系,因此针对自然界具有连续性的输入序列,如人类的语言、语音等进行很好的处理,广泛应用于NLP领域的各项任务,如文本分类、情感分析、意图识别、机器翻译等。   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OR_0295

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值