【算法基础学习 5】 欧拉角 方向余弦 四元数

本文详细介绍了SLAM中三维空间刚体运动的描述方式,主要讨论了旋转矩阵、欧拉角、方向余弦和四元数在姿态解算中的应用。探讨了欧拉角的优缺点,以及方向余弦和四元数表示姿态矩阵的更新方法,强调了四元数在姿态表示和计算上的优势。
摘要由CSDN通过智能技术生成

SLAM中三维空间的刚体运动描述方式

1. 旋转矩阵

1.点和向量,坐标系

  • 点:在几何学上点是 没有大小而只有位置,即点存在于三维空间中的某一个位置。
  • 向量: 可以形象化地表示为 带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。 (请勿将向量 与它的 坐标 两个概念混淆,只有确定向量所在的坐标系,才能讨论它在该坐标系下的坐标)
  • 定义坐标系后,也就是一个线性空间的基 (e1,e2,e3),向量a在该坐标系下的坐标为: 

  • 左手坐标系 和 右手坐标系(更为常见) 

  • 向量的运算 

1. 加减法
2. 内积(inner product): 可以描述向量间的投影关系 
      对于 a,b∈R3,内积可以表示为:

3.外积,亦称叉乘(cross product) 
        1) 对于 a,b∈R3,外积可以表示为:

           式中 ∧ 为反对称符号(可以读作“上尖”),a∧表示向量 a 的 反对称矩阵。
         2)外积可以表示向量的旋转:向量 a 到 b 的旋转向量 w 的方向就是 a×b的方向 

2、坐标系间的欧氏变换

对于同一个向量 p,它在世界坐标系下的坐标 pw和在相机坐标系下的坐标 pc是不同的,它们的变换关系由两坐标系间的变换矩阵 T 来描述。(如下图所示,下图来自视觉SLAM十四讲 图3-2) 

 

  • 欧氏变换 = 旋转 + 平移
  • 旋转 

             设某个单位正交基 (e1,e2,e3) 经过一次旋转变成 (e1′,e2′,e3′)。对于同一个向量 a(该向量不会因坐标系的旋转而发生运动),它在两个坐标系下的坐标分别为 [a1,a2,a3]T 和 [a1′,a2′,a3′]T,两坐标点满足: 

式 (3.4) 左右两边同时左乘 ,得 

式 (3.5) 中的旋转矩阵 R 的特殊性质: 
                   旋转矩阵是行列式为 1 的正交矩阵
                   旋转矩阵的逆为自身转置,逆矩阵 RT 表示一个相反的旋转
                   旋转矩阵的集合定义为: 

SO(n)是特殊正交群(Special Orthogonal Group),SO(3) 就是由三维空间的旋转矩阵组成。

  • 平移 

向量 a经过一次旋转 R 和一次平移 t 后,得到 a′ : 
                                                             

  • 1
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值