矩阵基础复习

标量、向量、矩阵和张量

标量:一个单独的数

向量:一列数/一个坐标

矩阵:一个二维数组

张量:坐标超过二维的数组

转置:矩阵以对角线为轴的镜像

矩阵和向量相乘

矩阵乘积:C=AB,其中,A: m * n; B: n * p; C: m * p

​ Ci,j=∑kAi,kBk,j
点积: xTy

矩阵乘积性质:


单位矩阵和逆矩阵

单位矩阵:任意向量和单位矩阵相乘,都不会改变,记为

​ 所有沿主对角线的元素都是1,其它元素都是0

矩阵逆:满足 (矩阵AA为方阵)

线性相关和生成子空间

如果逆矩阵存在,那么线性方程组Ax = b 肯定对于第一个向量b 恰好存在一个解

范数

L^{P}范数定义:
​ 范数:衡量向量的大小

​ 范数是满足下列性质的任意函数:


当p=1时:范数: ,当机器学习问题中零和非零元素之间的差异非常重要是,通常会使用L1L1范数。

当p=2时:范数,也称为欧几里得范数,它表示从原点出发到向量x确定的点的欧几里得距离

​ 简化表示为||x||
最大范数:L∞范数,
Frobenius范数:衡量矩阵的大小:

(有另一种描述方式,见迹运算)

​ 其类似于向量的范数

​ 两个向量的点积可以用范数为表示:

特殊类型的矩阵和向量

对角矩阵:只在主对角线上含有非零元素,其他位置都是零

对称矩阵:转置和自己相等的矩阵,即:
单位向量:具在单位范数的向量,即:
向量正交:如果,则称向量x和向量y互相正交,如果互相正交的向量范数都为1,那么称标准正交

正交矩阵:行向量和列向量是分别标准正交的方阵,即:
​ 这意味着:

特征分解

矩阵分解:将矩阵拆解为数个矩阵的乘积

特征分解:使用最广的矩阵分解之一,将矩阵分解成一组特征向量和特征值

特征向量:方阵A的特征向量(v)是指与A相乘后,相当于对该向量(v)进行缩放的非零向量

​ Av=λv (其中标量λ称为v的特征值)

​ (特征向量被施以线性变换A只会改变向量的模长,并不改变向量方向)

​ 性质:如果v是A的特征向量,那么缩放后的向量sv (s为非0实数)也是A的特征向量,而且sv和v有相同的特征值

特征分解:将矩阵分解成特征值和特征向量


​ V:n个线性无关的特征向量组成的矩阵; λ:n个特征值组成的列向量

奇异值分解(SVD)

奇异值分解:将矩阵分解成奇异值和奇异向量(跟特征分解比较)

伪逆

伪逆计算: 
​ 当矩阵A的列数多于行数时(可能有多个解),使用伪逆求解线性方程是众多可能解法中的一个,而且,x=A+y是方程所有解中欧几里得范数最小的一个

​ 当矩阵A的行数多于列数时(可能没有解),在这种情况下,通过伪逆得到的x使得Ax和y的欧几里得距离||Ax−y||2最小

迹运算

迹运算返回的是矩阵对角元素的和:
矩阵Frobenius范数另一种表达方式:

行列式

行列式:记作det(A),是一个将方阵A映射到实数的函数

​ 行列式等于矩阵特征值的乘积

​ 如果矩阵行列式等于0,那么空间至少沿着某一维完全收缩了(降维了)

​ 如果行列式等于1,那么这个转换保持空间体积不变
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值