为什么高斯函数适用性那么广?

转自这里

因为独立同分布中心极限定理,它的证明比较复杂就不写了,有兴趣搜一下.
其大概意思是:如果n个随机变量独立且同分布,那么当n趋于无穷大的时候,n个随机变量的和的分布函数就呈现正态分布的形式.
比如galton钉板实验.是比较好理解且直观的例子.
如果你接受了这个事实,那么就很好理解为什么高斯这么广泛地应用.
因为大部分事情在人类不知道其本质的情况下,我们都假设其为独立同分布的.所以其大量统计规律理所当然就是高斯的.
如果这么解释你很郁闷,说明你没法直接接受中心极限定理,那就还是去看其推导证明过程.

回头再去补一补【中心极限定理】的推导吧~

阅读更多
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭