卷积神经网络
洪流之源
这个作者很懒,什么都没留下…
展开
-
吴恩达-深度学习-卷积神经网络-Padding 笔记
为了构建深度神经网络,你需要学会使用的一个基本的卷积操作就是padding,让我们来看看它是如何工作的。我们在之前视频中看到,如果你用一个3×3的过滤器卷积一个6×6的图像,你最后会得到一个4×4的输出,也就是一个4×4矩阵。那是因为你的3×3过滤器在6×6矩阵中,只可能有4×4种可能的位置。这背后的数学解释是,如果我们有一个的图像,用的过滤器做卷积,那么输出的维度就是。在这个例子里是,因此得到了...原创 2018-05-11 15:43:01 · 18984 阅读 · 7 评论 -
吴恩达-深度学习-卷积神经网络-Stride 笔记
卷积中的步幅是另一个构建卷积神经网络的基本操作,让我向你展示一个例子。如果你想用3×3的过滤器卷积这个7×7的图像,和之前不同的是,我们把步幅设置成了2。你还和之前一样取左上方的3×3区域的元素的乘积,再加起来,最后结果为91。只是之前我们移动蓝框的步长是1,现在移动的步长是2,我们让过滤器跳过2个步长,注意一下左上角,这个点移动到其后两格的点,跳过了一个位置。然后你还是将每个元素相乘并求和,你将...原创 2018-05-11 16:03:17 · 21534 阅读 · 3 评论 -
吴恩达-深度学习-卷积神经网络-多层卷积 笔记
你已经知道如何对二维图像做卷积了,现在看看如何执行卷积不仅仅在二维图像上,而是三维立体上。我们从一个例子开始,假如说你不仅想检测灰度图像的特征,也想检测RGB彩色图像的特征。彩色图像如果是6×6×3,这里的3指的是三个颜色通道,你可以把它想象成三个6×6图像的堆叠。为了检测图像的边缘或者其他的特征,不是把它跟原来的3×3的过滤器做卷积,而是跟一个三维的过滤器,它的维度是3×3×3,这样这...原创 2018-05-11 16:31:22 · 15938 阅读 · 8 评论 -
卷积类型
https://baijiahao.baidu.com/s?id=1625255860317955368&wfr=spider&for=pchttps://blog.csdn.net/ahxieqi/article/details/93628533原创 2019-08-25 17:02:47 · 202 阅读 · 0 评论 -
全卷积网络FCN
背景CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题。神经网络大神Jonathan Long发表了《Fully Convolutional Networks for Semantic Segmentation》在图像语义分割挖了一个坑,于是无穷无尽的人往坑里面跳。全卷积网络 Fully Convolutional NetworksC...转载 2019-08-25 17:04:43 · 907 阅读 · 0 评论