简介
HF-Net:是一种大尺度下的稳健分层定位算子,论文为
CVPR 2019《HF-Net: Robust Hierarchical Localization at Large Scale》。 引入了六自由度视觉定位方法,该方法准确,可扩展且有效,使用HF-Net(单层深度神经网络用于描述子的提取(类似sift).据官方说提出的解决方案可实时运行,而且在很多大型数据集上准确度很高.
安装前配置准备
HFnet配置起来说难很难,说简单也很简单.主要是他的tensorflow使用的是老版本的1.12,导致其他相关的依赖库要有适合的版本才能运行,里面的细节有很多的坑,运气好的直接跑起来,运气不好像笔者这样就要费一番功夫.
接下里贴上笔者自己实验成功的版本配置,读者可以先按自己的配置安装,如果报错一个一个解决,很多问题都是tf1.12和CUDA 10.x不兼容的问题导致的:
GPU:GTX1060
nvida驱动:418.56
CUDA Version: 9.0.176
cudnn:libcudnn7_7.1.4.18-1+cuda9.0_amd64
tensorflow == 1.12
numpy == 1.60
Keras == 2.2.4
HFnet项目下载与配置
hfnet-github地址下载好之后在文件夹里:
make install