WSDM 2023 推荐系统相关论文整理(一)

WSDM 2023的论文录用结果已出,推荐系统相关的论文方向包含序列推荐,点击率估计等领域,涵盖图学习,对比学习,因果推断,知识蒸馏等技术,累计包含近四十篇论文,下文列举了部分论文的标题以及摘要,更多内容欢迎关注公众号【深度学习推荐算法】。
论文地址:
https://www.wsdm-conference.org/2023/program/accepted-papers

1 Disentangled Negative Sampling for Collaborative Filtering【解耦负采样的协同过滤,哈工程】

负抽样对于隐式协作过滤至关重要,以从大量未标记的数据中产生负样本。与现有在选择负面项目时考虑项目的现有策略不同,我们认为通常用户交互主要由某些相关但不是全部的项目驱动,从而导致了负面抽样的新方向。在本文中,我们介绍了一种新型的分离式负抽样(DENS)方法。我们首先使用分层门控模块解开正和负项目的相关和无关因素。接下来,我们设计了一种因素感知的抽样策略,可以通过对比相关因素来识别最佳的负面样本,同时保持无关紧要的因素相似。为了确保解开的信誉,我们建议采用对比学习并引入四个成对的对比任务,这使得能够学习有关相关和无关紧要的因素的更好的分解表示,并消除对地面真相的依赖。在五个现实世界数据集上进行的广泛实验证明了巢穴与几个最先进的竞争对手的优越性,在召回@20和ndcg@20方面,基线比最强的基线提高了7%以上。代码可在URL上公开获得:
https://github.com/riwei-heu/dens
在这里插入图片描述
图1:例证,其中e𝑟表示项目的相关因素,最好的颜色观看
在这里插入图片描述
算法1:DENS的训练过程

2 IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation【IDNP:使用生成神经过程进行序列推荐的兴趣动态建模,新南威尔士】

最近的顺序推荐模型越来越依赖连续的短期用户 - 项目交互序列来建模用户兴趣。但是,这些方法引起了人们对短期和长期利益的关注。(1)短期:交互序列可能不是由单一的利益引起的,而是来自几个相互缠绕的利益,即使在短时间内,也导致了它们无法模拟跳过行为的失败;(2)长期:相互作用序列主要是在离散的间隔内稀疏观察到的,而不是长期连续的。这使得难以推断长期利益,因为只能考虑到跨序列的利益动态,因此只能得出离散的利息表示。在这项研究中,我们通过学习来解决这些问题(1)短期利益的多尺度表示;(2)长期利益的动态意识表示。为此,我们使用生成神经过程(即创建的IDNP)提出了一个兴趣动态建模框架,以从功能的角度对用户兴趣进行建模。IDNP学习了一个全球兴趣函数家族,以定义每个用户的长期兴趣作为功能实例化,从而通过功能连续性来表达兴趣动态。具体而言,IDNP首先将每个用户的短期交互编码为多尺度表示,然后将其汇总为用户上下文。通过将潜在的全球兴趣与用户上下文相结合,IDNP然后重建长期用户兴趣功能,并在即将到来的查询时间段上预测交互。此外,即使相互作用序列有限且非连续性,IDNP也可以建模此类兴趣功能。在四个现实世界数据集上进行的广泛实验表明,我们的模型在各种评估指标上的表现都优于最先进。
在这里插入图片描述
图1:长期和短期利益的示例。
在这里插入图片描述
图2:IDNP模型概述,包括专注的兴趣编码器,双动力学推断和兴趣解码器。每个用户的序列是随机分为上下文集和目标集。细心的利息编码器捕获短期用户兴趣表示形式从多个量表中分配不同的重要性。双动力学推断由确定性推理组成(固体线和潜在推理(虚线),衍生出明显的利益表示𝒓𝒅和潜在的全球利益𝒛两种表示形式及其查询兴趣表示形式𝒓𝒒将征收到兴趣解码器中以获得预测性兴趣表示𝒅𝒒,它与𝒆𝒖相连,以通过完全连接的所有项目预测所有项目的交互式概率层。

3 Learning to Distinguish Multi-User Coupling Behaviors for TV Recommendation【学习区分电视推荐中的多用户耦合行为,上交,移动】

本文与电视推荐有关,其中一个主要挑战是耦合行为问题,即多个用户的行为耦合在一起,而不是直接区分,因为用户共享同一帐户。由于其他用户的行为引入的噪音,无法识别当前观看用户并直接使用耦合行为可能会导致次级建议结果。大多数现有方法通过无监督的聚类算法或根据潜在的用户表示学习的方式来处理此问题。但是,他们忽略了当前的会话行为,这些行为携带了用户识别的信息。现有模型的另一个关键限制是缺乏对行为区分的监督信号,因为它们仅取决于最终点击标签,这不足以提供有效的监督。为了解决上述问题,我们提出了耦合序列模型(COSMO)以进行电视推荐。在Cosmo中,我们设计了一种会话感知的共同注意机制,该机制使用候选项目和会话行为作为以精细元素方式处理历史行为的查询。此外,我们建议使用具有多个设备的帐户数据(例如,具有各种电视机的家庭),这意味着一个帐户的行为是在不同设备上生成的。我们将设备的信息视为弱监督,并提出了一种新颖的对偶发注意力损失,以区分耦合行为。与现有模型相比,对商用电视服务提供商进行了广泛的离线实验和在线A/B测试,证明了Cosmo的功效。

在这里插入图片描述
图1:耦合行为示例
在这里插入图片描述
图2:Cosmo的总体框架

4 One for All, All for One: Learning and Transferring User Embeddings for Cross-Domain Recommendation【迁移学习跨域推荐,阿尔伯塔,腾讯】

跨域建议是提高推荐系统性能的重要方法,尤其是当目标域中的观察很少时。但是,大多数现有技术都集中在单目标或双目标跨域推荐(CDR)上,并且很难将其推广到具有多个目标域的CDR。此外,在CDR中,负转移问题很普遍,在CDR中,目标域中的建议性能并非总是通过从源域中学到的知识来增强的,尤其是当源域的数据稀疏时。在这项研究中,我们提出了一种多目标CDR方法Cat-Art,该方法学会通过表示学习和嵌入转移来改善所有参与域中的建议。我们的方法由两个部分组成:一个自我监督的对比自动编码器(CAT)框架,以根据所有参与域中的信息生成全局用户嵌入,以及基于注意的表示表示转移(ART)框架,该框架转移了从其他特定于域的用户嵌入从其他特定于其他用户嵌入的框架协助目标域建议的域。Cat-Art通过从其他域中转移的全局用户表示形式和知识的联合使用来提高任何目标域中的建议性能,此外原始用户嵌入了目标域中。我们对跨越5个域并涉及一百万用户的现实世界中的CDR数据集进行了广泛的实验。实验结果证明了所提出的方法比一系列先前的艺术的优越性。我们进一步进行了消融研究,以验证所提出的组件的有效性。我们收集的数据集将被开源,以促进多域推荐系统和用户建模领域的未来研究。
在这里插入图片描述
图1:CAT模型的体系结构。CAT模块将特定于域的用户嵌入作为输入中,并以自我监督的方式生成全局用户表示形式。然后,将所有其他域的全局用户嵌入𝑒𝑖和域特异性嵌入被转移到目标域,例如域2,以提高推荐效果

5 Slate-Aware Ranking for Recommendation【排序感知推荐,腾讯】

我们看到了Slate推荐系统的广泛采用,其中有序的项目列表根据用户兴趣和项目的内容提供给用户。对于每个建议,用户可以从列表中选择一个或几个项目进行进一步交互。在这种情况下,对项目中相互影响的用户行为产生的重大影响是充分理解的。现有方法增加了推荐系统排名阶段后重新排列的另一个步骤,该系统考虑了推荐项目之间的相互影响,以重新升级并产生建议结果,从而最大程度地提高了预期的整体效用。但是,为了建模多个推荐项目的复杂交互作用,由于有限的硬件资源和系统延迟的限制,重新排列阶段通常只能处理数十个候选人。因此,对于大多数应用程序,为重新排列阶段提供高质量的候选者仍然至关重要。在本文中,我们提出了一个在排名阶段的解决方案,名为Slate-Aware Carking(SAR)。通过隐式考虑板岩项目之间的关系,它可以显着提高重新排列阶段的候选人设置的质量,并提高整体推荐系统的相关性和多样性。对公共数据集和内部在线A/B测试进行了两项实验,以验证其有效性。
在这里插入图片描述
图1:在YouTube上观看下一个推荐
在这里插入图片描述
图2:SAR的模型架构

6 Knowledge Enhancement for Contrastive Multi-Behavior Recommendation【对比多行为推荐系统,南航】

精心设计的推荐系统可以准确捕捉用户和物品的属性,反映个人的独特偏好。传统的推荐技术通常侧重于对用户和物品之间单一类型的行为建模。然而,在许多实际的推荐场景(如社交媒体、电子商务)中,用户与物品之间存在着多类型的交互行为,如在线购物平台中的点击、标记为收藏、购买等。因此,如何充分利用多行为信息进行推荐对现有系统具有重要意义,这在两个方面提出了需要探索的挑战:(1)利用用户的个性化偏好捕捉多行为依赖关系;(2)处理目标行为监督信号稀疏导致的推荐不充分问题。在这项工作中,我们提出了一个知识增强多行为对比学习推荐(KMCLR)框架,包括两个对比学习任务和三个功能模块,以分别应对上述挑战。其中,我们设计了多行为学习模块,以提取用户的个性化行为信息进行用户嵌入增强,并在知识增强模块中利用知识图谱为项目推导出更健壮的知识感知表征。此外,在优化阶段,我们对用户多种行为之间的粗粒度共性和细粒度差异进行建模,以进一步提高推荐效果。在三个真实数据集上进行的大量实验和消融测试表明,我们的 KMCLR 优于各种最先进的推荐方法,并验证了我们方法的有效性。
在这里插入图片描述
图1:KMCLR框架的模型体系结构

7 Disentangled Representation for Diversified Recommendations【多样性推荐中解耦表征,字节】

长期以来,准确性和多样性被认为是建议的两个矛盾目标。但是,我们指出,由于多样性通常是通过某些预选项目属性来衡量的,例如,类别是最流行的属性,只要多元化尊重用户的喜好,就可以在不牺牲建议准确性的情况下实现改善的多样性。关于预先选择的属性。这需要对用户对项目的偏好进行细粒度的了解,在这种情况下,人们需要识别用户的选择是由项目本身的质量或项目的预先选择的属性驱动的。
在这项工作中,我们专注于在项目类别上定义的多样性。我们向建议算法的选择提出了一个普遍的多元化框架不可知论。我们的解决方案将推荐模块中学习的用户表示形式分为类别独立和类别依赖性组件,以从两个正交角度将用户对项目的喜好区分开。三个基准数据集和在线A/B测试的实验结果证明了我们解决方案在提高建议准确性和多样性方面的有效性。深入的分析表明,改进是由于我们改进了用户对项目类别中用户的偏好和精制排名的建模。

在这里插入图片描述
图1:推荐模型中的建议精度和多样性优化的说明
在这里插入图片描述
图2:DCR的分层决策过程框架。每个反馈由:(1)用户优先考虑项目类别;(2)用户更喜欢与该项目的类别独立特征相比
在这里插入图片描述
图3:DCR的体系结构,将用户对项目𝑖的偏好置于类别依赖性段𝒉和与类别无关的段𝒉⊥中,以提供多种和准确的建议

8 Cognition-aware Knowledge Graph Reasoning for Explainable Recommendation【可解释推荐的认知知识图推理,人大】

知识图(kgs)已被广泛用于建议系统中,以有效提高建议准确性和解释性。最近的研究通常会赋予KG推理,以找到多跳的用户项目连接路径,以解释为什么推荐项目。现有的路径调查过程是由逻辑驱动的推理算法精心设计的,而算法和用户如何感知推理过程之间存在差距。实际上,人类思维是一个自然的推理过程,可以为为什么要做出特定决定提供更正确和令人信服的解释。由认知科学的双重过程理论激发,我们提出了一种认知感知的KG推理模型Coger,以解释建议,该模型模仿了人类的认知过程并设计了两个模块,即系统〜1(做出直觉判断)和系统〜2(2)进行明确的推理),生成实际的决策过程。在认知感知推理过程中的每个步骤中,系统〜1根据用户的历史行为对下一步实体产生直观的估计,并且系统〜2进行明确的推理并选择最有前途的知识实体。这两个模块在迭代上工作,是相互互补的,使我们的模型能够产生高质量的建议和适当的推理路径。在三个现实世界数据集上的实验表明,与以前的方法相比,我们的模型通过解释获得了更好的建议结果。
在这里插入图片描述
图1:认知感知的kg推理的插图过程。(a)系统1和系统2迭代工作。蓝色箭头指示两个系统之间的相互作用。(b)红色圆圈和箭表示在为用户𝑢1提出建议
在这里插入图片描述
图2:我们模型的体系结构。系统1在推理之前为用户生成个性化的Metapath集。在每个步骤在推理过程中,系统1是一个特定于关系的实体估计器,用于直观估计,系统2是增强明确推理的学习框架。红色箭头指示第一个推理步骤(t = 0)的工作流程

9 Self-Supervised Group Graph Collaborative Filtering for Group Recommendation【群组推荐的自监督群图协同过滤,中山】

如今,人们参加群组活动越来越方便。因此,为个人提供一些建议是必不可少的。群组推荐是为社交网络或在线社区中的一组用户建议项目或事件的任务。在这项工作中,我们在特定情况下研究群组推荐,该建议很少或没有历史直接相互作用的项目。现有的群组推荐方法主要采用基于注意力的偏好聚合策略来捕获小组偏好。但是,这些模型要么忽略了组,用户和项目之间的复杂高阶相互作用,要么通过引入复杂的数据结构来大大降低效率。此外,由于缺乏历史群体项目的相互作用,偶尔的小组建议会遇到数据稀疏问题。在这项工作中,我们专注于应对上述挑战,并提出了一个新颖的群组推荐模型,称为“自我监管群组图”协作过滤(SGGCF)。该模型的目的是捕获用户,项目和组之间的高阶交互,并以有效的方式减轻数据稀疏问题。首先,我们将复杂关系明确地将其建模为统一的以用户为中心的异质图,并设计基本组推荐模型。其次,我们使用两种对比度学习模块探索图表上的自我监督学习,以捕获组与项目之间的隐式关系。最后,我们将提出的对比学习损失视为补充,并采用多任务策略来共同训练BPR损失和拟议的对比学习损失。我们对三个现实世界数据集进行了广泛的实验,实验结果证明了与最先进的基线相比,我们提出的模型的优越性。
在这里插入图片描述
图1:我们提出的群组推荐框架的概述

10 Calibrated Recommendations as a Maximum Flow Problem【作为最大流量问题的校准化推荐,spotify】

推荐系统中的校准最近引起了人们的重大关注。在建议的项目列表中,校准确保用户的各种(过去)感兴趣的区域都以相应的比例反映出来。例如,如果用户观看了80部浪漫电影和20部动作电影,那么可以合理地期望推荐的电影列表包括约80%的浪漫片和20%的动作电影。鉴于对准确性的优化通常会导致用户在收到的建议下,校准通常会导致用户的少数群体利益以其主要利益或一些总体受欢迎的物品为主。在本文中,我们提出了一种基于最大流量问题来生成校准建议的新方法。在使用两个公开可用数据集的一系列实验中,我们证明了我们所提出的方法的出色性能与生成相关和校准的建议列表相比。
在这里插入图片描述
图1:用户的聆听历史记录和为该用户生成的三个不同的推荐集
在这里插入图片描述
图2:在此示例中,列表中有4个插槽(𝑛= 4),候选人集中有6个项目(𝑚= 6)和2个允许的内容类别(𝑐= 2)。项目1、2和4属于类别1,项目3、5和6属于类别2。将每个𝑡𝑖放入每个𝑦𝑗都有一定的值𝐴𝑖,𝑗。例如,将项目𝑡1放入插槽𝑦1中的值为4.3(𝐴1,1= 4.3),将项目𝑡6放入插槽𝑦3中的值为1.0(𝐴6,3= 1.0)
在这里插入图片描述
图3:在此示例中,列表中有4个插槽(n = 4),候选人集中有6个项目(M = 6)和2个允许的内容类别(C = 2)。项目1、2和4属于类别1,项目3、5和6属于类别2

11 DisenPOI: Disentangling Sequential and Geographical Influence for Point-of-Interest Recommendation【DisenPOI:解耦POI推荐中序列和地理的影响,北大,美团】

兴趣点(POI)推荐在各种位置感知服务中发挥着至关重要的作用。据观察,兴趣点推荐既受顺序影响,也受地理影响。然而,由于在推荐过程中没有对主导影响因素进行标注,现有方法往往会将这两种影响因素纠缠在一起,从而导致推荐性能不理想和可解释性差。在本文中,我们针对上述挑战提出了 DisenPOI,这是一种用于 POI 推荐的新颖的 “分离双图 ”框架,它联合利用了两个独立图上的顺序关系和地理关系,并通过自我监督来分离这两种影响因素。与现有方法相比,我们的模型的主要新颖之处在于通过对比学习提取顺序和地理影响因素的分离表征。具体来说,我们根据用户的签到顺序构建了地理图谱和顺序图谱。我们调整了它们的传播方案,使其具有序列/地理感知能力,从而更好地捕捉相应的影响因素。从签到序列中提取偏好代理作为两个影响因素的伪标签,通过对比损失来监督解缠。在三个数据集上进行的广泛实验证明了所提模型的优越性。
在这里插入图片描述
图1:签入背后的分离影响的说明。访问𝑣4受到地理和顺序图的相邻节点的影响
在这里插入图片描述
图2:Disenpoi模型。a)嵌入POI的层;b)生成分离的表示表示𝑒𝑔,𝑢,𝑒𝑠,𝑢,它们的代理𝑝𝑔,𝑢,𝑝𝑠,𝑢,; c)汇总poi嵌入的软注意事项层,以进行对比损失和模型预测;d)预测层的预测层。

12 Multi-Intentions Oriented Contrastive Learning for Sequential Recommendation【面向多意图的序列推荐对比学习,天大】

序列推荐旨在捕获用户的动态偏好,其中数据稀疏是一个关键问题。大多数对比的学习模型都利用数据增强来解决此问题,但它们以原始序列扩大了噪声。对比学习的假设是,从相同的用户行为序列获得的两个视图(正对)必须相似。但是,噪音通常会干扰用户的主要意图,这导致两种视图的差异。为了解决这个问题,在这项工作中,我们通过选择用户的主要意图来形式化denoising问题,并在此主题下首次应用对比度学习,即,我们提出了一个新颖的框架,即面向多意性的对比鲜明学习建议( iocrec)。为了创建具有意图级别的高质量视图,我们融合了本地和全局的意图,以统一顺序模式和意图级别的自我相关信号。具体而言,我们在ICREC中设计了序列编码器,其中包括三个模块:本地模块,全局模块和删除模块。全局模块可以捕获独立于本地模块的用户的全局首选项。分离的模块可以在全球和本地表示背后获得多意义。从细粒度的角度来看,Iocrec分开了不同的意图来指导denoising过程。在四个广泛使用的真实数据集上进行的广泛实验证明了我们新方法进行序列推荐的有效性。
在这里插入图片描述
图1:比较基线模型和我们的新方法ICREC的对比度学习策略的案例
在这里插入图片描述
图2:整体框架:(a)说明变压器的结构(b)介绍序列编码器的结构(c)基于选择当前主要意图的下一个项目(d)演示序列的Cl。增强操作员设置a = {c,m,r,s,i},详细信息请参见第2.3节,首先将序列增强为正面对,并随机选择两个增强操作员𝑎𝑖,从集合A中。通过从序列编码器串联嵌入输出来序列。最后,它最大程度地提高了意图级别的正面对之间的一致性

13 MUSENET: Multi-Scenario Learning for Repeat-Aware Personalized Recommendation【MUSENET:重复感知的个性化推荐的多场景学习,南大,阿里】

个性化的建议在许多实际应用中发挥了作用。尽管取得了巨大进展,但现有推荐系统在很大程度上忽略了基本的多幕科特征(例如,在不同方案下用户的行为可能有所不同)。直观地,正确对不同的方案进行建模可以显着提高建议准确性,并且一些现有的工作探索了这一方向。但是,这些工作假定该方案是明确给出的,因此当无法提供此类信息时,它们的效率就降低了。为了使事情进一步复杂化,来自数据的适当方案建模具有挑战性,推荐模型可能很容易地过度适合某些方案。在本文中,我们提出了一个多幕科学习框架Musenet,以供个性化建议。Musenet的关键思想是从用户行为中学习多种隐式情景,并以因果解释的启发,以推荐系统的因果解释启发,以避免过度拟合问题。此外,由于用户的重复消费量是许多电子商务平台上大部分用户行为数据的说明,因此集成了一种重复感知机制,以在每种情况下处理用户的回购意图。与最先进的方法相比,对工业和公共数据集的全面实验结果证明了拟议方法的有效性。
在这里插入图片描述
图1:在线旅行平台多种情况的说明性示例。在不同情况下(例如,商务旅行与休闲旅行),用户可能具有不同的偏好
在这里插入图片描述
图2:推荐方法的因果图。(a)直接根据数据样本𝑋直接预测相互作用的传统方法。(b)构建场景𝐶(例如,基于预定义的规则)的现有方法是𝑋和𝑌的共同原因。(c)我们的方法从数据中学习方案并切断了由𝐶→𝑋→𝑌引起的混杂效应
在这里插入图片描述
图3:Musenet模型的整体结构
在这里插入图片描述

  • 19
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习推荐算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值