袭扰战术_日常工作流程中的战术自动化

袭扰战术

In the post-COVID era, CXOs around the world are thinking earnestly about comprehensive transformation strategies. However, if you have a half-decent engineering team, you don’t have to wait for them to get their act together. Just follow this generic approach that we use at Coseer for intelligent process automation at our clients.

在后COVID时代,世界各地的CXO都在认真思考综合转型策略。 但是,如果您的工程团队过半体面,则不必等待他们团结起来。 只需遵循我们在Coseer上使用的通用方法,即可为客户提供智能过程自动化。

Let’s say you already have a workflow in mind that you want to automate. Ask these questions:

假设您已经有了要自动化的工作流程。 提出以下问题:

1.为什么要自动化此工作流程? (1. Why do you want to automate this workflow?)

The answers may be varied. The best reasons in my experience are about user convenience (internal or external) or to save time. The worst, to save costs. Automation takes some effort, and if the motivation is not inspiring enough, perhaps you should not start on it at all. This idea cuts across many problems in the field of digitalization. The first stage “Understand What You Really Need” in this article for chatbots published in The Startup is very pertinent.

答案可能有所不同。 根据我的经验,最好的原因是为了用户方便(内部或外部)或节省时间。 最坏的是,节省成本。 自动化需要花费一些精力,如果动力不足以激发人们的灵感,也许您根本不应该从头开始。 这个想法解决了数字化领域的许多问题。 本文针对“启动”中发布的聊天机器人的第一阶段“了解您的真正需求”非常相关。

2.工作流中数据的上行方向是什么? (2. What is the upstream journey of data in the workflow?)

Always start from the output. If you have answered question 1 correctly, then you have a good idea by now. Start working backwards. What is absolutely necessary to generate this output? The answers would typically be in the form of a) data, b) processes, and c) judgment that is essentially human. The C part is usually a big pitfall and appears counter-intuitive. However as you map workflows you will realize that somethings only a human can do.

始终从输出开始。 如果您已正确回答问题1,那么您现在已经有了一个好主意。 开始向后工作。 生成此输出绝对需要什么? 答案通常是a)数据,b)过程和c)本质上是人为的判断。 C部分通常是一个很大的陷阱,并且看起来违反直觉。 但是,当您映射工作流时,您将意识到只有人类才能做的事情。

3.如何使用API​​集成数据源? (3. How can the data sources be integrated using APIs?)

This is the dumbest and one of the most important parts of the automation journey. Sound data management is critical to every digital automation project, and is often woefully lagging. See the discussion under the fifth core value of digital transformation as presented in Chatbots Life. In short, if you cannot reliably and repeatably get the necessary data, it would be impossible to go about this automation.

这是自动化旅程中最愚蠢且最重要的部分之一。 声音数据管理对于每个数字自动化项目都至关重要,而且往往非常落后。 请参阅Chatbots Life中介绍的关于数字化转型的第五个核心价值的讨论。 简而言之,如果您不能可靠且可重复地获取必要的数据,则无法进行这种自动化。

4.数据处理如何自动化? (4. How can the data processing be automated?)

Processing the data automatically to get the right derivatives can be very easy or very hard. Take as simple an approach as can work. AI is very tempting, but if you do use AI, be wary of its costs. Some of them are mentioned in this KDNuggets article. Broadly, it takes a lot to get it to work, it needs a lot of data to train, and it can be unreliable unless controlled appropriately. Dark Reading has an interesting discussion about the last one. Even within AI, simpler algos applied correctly are far more effective than complex, little understood algos.

自动处理数据以获取正确的导数可能非常容易,也可能非常困难。 采取尽可能简单的方法。 AI非常诱人,但是如果您确实使用AI,请警惕其成本。 KDNuggets的这篇文章中提到了其中一些。 广泛地讲,要使其正常工作需要很多时间,需要训练大量数据,而且除非进行适当控制,否则它可能不可靠。 《黑暗阅读》对最后一个进行了有趣的讨论 。 即使在AI中,正确应用的简单算法也比复杂,鲜为人知的算法有效。

Another aspect here is to not reinvent the wheel. If minor modifications or minor compromises let you use an open source package, or some module that you programmed earlier, go for it. Done is far better than perfectly begun.

这里的另一方面是不重新发明轮子。 如果进行了较小的修改或较小的折衷,则可以使用开源软件包或先前编程的某些模块,请继续使用。 做比完美开始要好得多。

5.是否可以将工作流程重新设计为更自动化? (5. Can the workflow be redesigned to be more automatable?)

For the first workflow you do this analysis on, you are bound to face hiccups. There may be things that must have humans. There may be data sources that are simply intractable. Or there may be processing steps that cannot be automated with resources that you have available. The answer is not to give up, but to see if you can redesign the workflow around these hiccups. Perhaps break it, or use alternative sources, or stage it to fix the easier parts now and worry about the rest later. Even partially automated workflows go a long way.

对于进行此分析的第一个工作流程,您肯定会遇到困难。 可能有些东西必须有人。 可能有一些简单易懂的数据源。 或者,有些处理步骤无法利用您可用的资源自动执行。 答案不是放弃,而是看是否可以围绕这些问题重新设计工作流程。 也许将其破坏,或使用替代资源,或分阶段进行修复,以便现在修复较容易的部分,然后再担心其余部分。 即使是部分自动化的工作流程也要走很长一段路。

Only after you have thought through each of these five questions would you be ready to start on your automation project. By now, you must know of the best tools, best packages and the best approach to do it. The only other thing you should think about is to do everything in a modular, productized and repetitive way so that the next workflow you take up is easier, and the next even more.

只有仔细考虑了这五个问题后,您才可以开始进行自动化项目。 到目前为止,您必须了解最佳工具,最佳软件包和最佳方法。 您唯一需要考虑的另一件事是以模块化,产品化和重复的方式进行所有操作,以使您占用的下一个工作流程更容易,甚至更多。

翻译自: https://medium.com/swlh/tactical-automation-in-day-to-day-workflows-48cfc3f95f95

袭扰战术

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值