ml ai_ai ml已死,万岁ai ml

ml ai

In recent years, large organizations have committed billions to AI/Machine Learning (AI/ML) investment. According to CIO Magazine, the retail and banking sectors estimated that their 2019 spend on AI/ML would be, cumulatively, in excess of $11.6 Billion. The Healthcare sector was estimating an investment of approximately $36 Billion by 2025. (final totals are still pending)

近年来,大型组织已承诺向AI /机器学习(AI / ML)投资数十亿美元。 据《 CIO Magazine》报道 ,零售和银行业估计,他们在2019年在AI / ML上的支出累计将超过116亿美元。 到2025年,医疗保健行业估计投资约为360亿美元。

Even with these huge financial commitments, some analysts predict that 87% of AI/ML Projects will fail to deliver as promised or never make it into production.

即使有这些巨大的财务承诺,一些分析家预测,仍有87%的AI / ML项目无法按承诺交付或永远不会投入生产。

Of particular note is that the vast majority of AI/ML projects today are targeted for internal datacenter deployment. This legacy, “inside the corporate fabric” metaphor, imposes a number of constraints and these constraints are a primary reason for failed projects:

特别值得注意的是,当今的绝大多数AI / ML项目都是针对内部数据中心部署的。 这种“公司结构内部”的隐喻带来了许多约束,这些约束是项目失败的主要原因:

1) Organizations can’t keep up with AI/ML infrastructure needs. AI/ML demand for computing and storage is huge and accelerating. But unfortunately, the handcuffs imposed by corporate datacenters, in particular, the lack of elastic scalability and timely access to suitable infrastructure and perpetual need to evergreen infrastructure and upskill staff, makes the infrastructure demands of AI/ML untenable.

1)组织无法满足AI / ML基础架构的需求。 AI / ML对计算和存储的需求巨大且正在加速。 但是不幸的是,企业数据中心强加的手铐,尤其是缺乏弹性的可伸缩性,无法及时访问合适的基础架构以及对常绿基础架构和技能不断提高的员工的长期需求,使得AI / ML的基础架构需求难以为继。

2) AI/ML demand for data, and in particular sensitive data, is stretching the capability of corporate security. The inability to address, in a practical manner, the security constraints required to access sensitive data makes data availability cumbersome at best and, more often, prohibitive.

2)AI / ML对数据(尤其是敏感数据)的需求正在扩展企业安全性的能力。 无法以实际的方式解决访问敏感数据所需的安全性约束,这使得数据可用性充其量是繁琐的,并且通常是令人望而却步的。

3) Corporate processes, and in particular a lack of maturity of the DEVOPS processes, seriously inhibits the rapid, iterative deployment of models needed to maintain business value required by AI/ML.

3)公司流程,尤其是DEVOPS流程不够成熟,严重阻碍了维持AI / ML所需业务价值所需的模型的快速迭代部署。

However, there are a few things we know for certain. The need for computing and storage will continue to increase. The need for sensitive data will increase. And the need for speed and agility in delivering AI/ML projects — and business results — will continue to be unrelenting.

但是,我们可以确定一些事情。 对计算和存储的需求将继续增加。 对敏感数据的需求将会增加。 在交付AI / ML项目以及业务成果时,对速度和敏捷性的需求将继续保持不变。

Unfortunately, existing (and likely proprietary) datacenter AI/ML capability is hopelessly out of date for all but the simplest of tasks. It won’t scale. It is more fragile than agile. It may work today, but it can’t grow to address tomorrow’s needs.

不幸的是,除了最简单的任务外,现有的(可能是专有的)数据中心AI / ML功能已经过时了。 它不会扩展。 它比敏捷更脆弱。 它可能在今天起作用,但不能满足未来的需求。

So, most AI/ML practitioners are faced with a simple decision. Is it worthwhile to continue to invest in the AI/ML tools and processes that are currently in use? Or, is it time to rethink the enterprise AI/ML approach and consider a scalable, resilient, and evergreening platform: cloud-native AI/ML?

因此,大多数AI / ML练习者都面临一个简单的决定。 继续投资于当前正在使用的AI / ML工具和流程是否值得? 或者,是否该重新考虑企业AI / ML方法并考虑可扩展,有弹性且常青的平台:云原生AI / ML?

We cast our lot firmly with the latter. Cloud scales. Cloud is largely self-serve and agile. And, cloud will grow and seamlessly evolve to address tomorrow’s business needs.

我们坚决反对后者。 云规模。 云在很大程度上是自助服务和敏捷的。 而且,云将不断发展并无缝发展,以满足未来的业务需求。

规模需求 (The Need for Scale)

Unlike Google, Microsoft, Amazon, and the other cloud titans, an enterprise’s primary business is probably not IT. Of equal importance for all organizations, infrastructure demand created by AI/ML can often leave enterprises in a situation where a large infrastructure investment sits fallow in times of lesser demand. So, it isn’t surprising that organizations frequently fail to address scalability demanded by AI/ML.

与Google,Microsoft,Amazon和其他云技术巨头不同,企业的主要业务可能不是IT。 对于所有组织而言,同样重要的是,由AI / ML创建的基础设施需求通常会使企业处于需求减少的时期,大量基础设施投资处于闲置状态。 因此,组织经常无法解决AI / ML要求的可伸缩性也就不足为奇了。

To compound the scalability problems, technology advancements in infrastructure continue to outpace procurement cycles. Even further exacerbating this issue, is the inability to continually reskill workforces to build and support newer AI/ML platforms. In short, companies cannot keep up and, typically, organizations trying to “catch up” incur more costs, lose competitive advantage and, in their rush to bridge technology gaps, often make mistakes that can impact their brands and customer loyalty. They need to get out of the IT business and focus on the products and services that they deliver to their customer base.

为了解决可扩展性问题,基础架构中的技术进步继续超过采购周期。 甚至使该问题更加恶化的是无法持续提高员工的技能以构建和支持更新的AI / ML平台。 简而言之,公司无法跟上步伐,通常情况下,试图“追赶”的组织会招致更多成本,失去竞争优势,并且急于弥合技术差距时,往往会犯下会影响其品牌和客户忠诚度的错误。 他们需要摆脱IT业务,专注于交付给客户群的产品和服务。

To address this situation, we are seeing more and more organizations migrating their AI/ML workload to the cloud, thereby leveraging a cloud vendor’s economies of scale, technical competency, and cost effectiveness that organizations’ internal IT groups lack.

为了解决这种情况,我们看到越来越多的组织将其AI / ML工作负载迁移到云中,从而利用了组织内部IT团队所缺乏的云供应商的规模经济,技术能力和成本效益。

成本效益至关重要 (Cost Effectiveness is Essential)

Another consequence of the insatiable demand for scalable infrastructure and the associated costs, is that an environment is created where data scientists and data engineers (typically business focused resources) are attempting to run AI/ML “outside the operational fabric”. They’re developing, training and running models on localized environments (desktop machines, small servers or even laptops) that are often not supported by the enterprise. Typically, these environments can only accommodate limited data and, from a regulatory perspective usually can only use public data. The limited scalability of these environments, coupled with the relatively small datasets, results in depleted efficacy of models and thereby reduction of business value.

对可伸缩基础架构和相关成本的需求无法满足的另一个结果是,在这样一个环境中,数据科学家和数据工程师(通常是业务重点资源)试图在“操作架构外”运行AI / ML。 他们正在企业通常不支持的本地化环境(台式机,小型服务器甚至笔记本电脑)上开发,训练和运行模型。 通常,这些环境只能容纳有限的数据,并且从法规角度来看,通常只能使用公共数据。 这些环境的可伸缩性有限,再加上相对较小的数据集,导致模型的功效降低,从而降低了业务价值。

To further compound this issue, because the environments are outside of the fabric of operational monitoring, the data that is resident in these environments is at a higher risk of being compromised.

由于环境不在操作监视范围之内,因此进一步加剧了此问题,驻留在这些环境中的数据受到破坏的风险更高。

Public cloud infrastructures provide the ability, mitigate the infrastructure costs, protect data and improve the efficacy of models. Providers like Microsoft, Google, Amazon and IBM provide cloud capability that provides elastic scalability in a truly operationalized capacity. The capability to store large data sets and the compute capacity to engineer them and train models is a key differentiator to “on prem” infrastructures.

公共云基础架构可提供此功能,减轻基础架构成本,保护数据并提高模型的效力。 像Microsoft,Google,Amazon和IBM这样的提供商都提供了云功能,以真正可操作的容量提供弹性的可伸缩性。 存储大型数据集的能力以及对它们进行工程设计和训练模型的计算能力是“本地”基础架构的关键区别。

数据的安全性 (Safety and Security of Data)

Migration to the cloud for AI/ML undertakings is not without its challenges. Security of data needs to be of paramount importance and, often, migration of any project to a public cloud provider is met with resistance from those tasked with the protection of data. Recently, data breaches like at CapitalOne and Desjardins have, rightly, heightened these concerns. This is particularly true with data that is classified as PII data (Personally Identifiable Information). In financial services, although things like credit card and mutual fund processing often require movement of PII data outside of corporate fabric, Cloud is still viewed as new technology and often perceived by information security organizations as “risky”.

向AI / ML企业迁移到云并非没有挑战。 数据的安全性是至关重要的,通常,任何项目向公共云提供商的迁移都会遇到那些承担数据保护任务的人员的抵制。 最近,像CapitalOneDesjardins这样的数据泄露事件无疑加剧了这些担忧。 对于归类为PII数据(个人身份信息)的数据尤其如此。 在金融服务中,尽管诸如信用卡和共同基金处理之类的事情通常需要将PII数据移至公司结构之外,但Cloud仍被视为一种新技术,并且被信息安全组织通常视为“风险”。

Given this perception, it’s not surprising that data security is top of mind for Information Security and Data Governance Groups. Bridging the real and perceived security gaps is essential for any Cloud based AI/ML initiative.

考虑到这一点,将数据安全放在信息安全和数据治理小组的首位就不足为奇了。 对于任何基于云的AI / ML计划而言,弥合真实和可感知的安全差距至关重要。

It is true that venders spend generously on security. Microsoft alone spends over $1 Billion on cyber security and fends off approximately 7 trillion cyber threats a day (source). Also, these cloud vendors provide a robust set of APIs in order to integrate back to any organization’s enterprise security and environment monitoring software. This allows companies to be aware of events and changes on the platform. Still, in order to protect the organization, companies making the migration to the cloud need to take certain steps to protect themselves and their customers.

的确,供应商在安全方面花了很多钱。 仅微软一家公司就在网络安全上花费了超过10亿美元,每天抵御大约7万亿次网络威胁( 来源 )。 此外,这些云供应商还提供了一组可靠的API,以便集成回任何组织的企业安全和环境监控软件。 这使公司可以了解平台上的事件和更改。 尽管如此,为了保护组织,向云迁移的公司仍需要采取某些步骤来保护自己和客户。

Items like data encryption at rest and in motion, physical security, network security, Virtual Public Clouds (VPCs), configuration monitoring of infrastructure & network are basic table stakes. However, Identity Access Control is probably the most critical aspect of security in an AI/ML cloud ecosystem.

基本的赌注包括诸如静态和动态数据加密,物理安全性,网络安全性,虚拟公共云(VPC),基础结构和网络的配置监视之类的项目。 但是,身份访问控制可能是AI / ML云生态系统中安全性的最关键方面。

Identity Access Control allows for data scientists and data engineers to operate on a project by project basis and can restrict read access to the data by specific roles so that data access is truly on a “need to know” basis. Even more importantly, Identity Access Control can limit write access to data to be controlled only through applications. While this won’t entirely eliminate the potential for “bad actors” who do have authorized access, it does control most hacker issues. Essentially, this greatly controls the “blast radius” of any potential threat.

身份访问控制允许数据科学家和数据工程师在每个项目的基础上进行操作,并可以通过特定角色来限制对数据的读取访问,从而使数据访问真正基于“需要知道”的基础。 更重要的是,身份访问控制可以将对数据的写访问限制为仅通过应用程序来控制。 虽然这不会完全消除具有授权访问权限的“不良行为者”的潜力,但它确实控制了大多数黑客问题。 本质上,这极大地控制了任何潜在威胁的“爆炸半径”。

It’s also recommended that, at least for training environments, one-way data flows where data can get moved and stored onto the platform but can only be accessed and visualized using “Citrix like” tools, be implemented.

还建议至少在培训环境中,实现单向数据流,在该单向数据流中,数据可以移动并存储到平台上,但只能使用“ Citrix like”工具进行访问和可视化。

In the event that data must move out of the training environment, multiple executive approvals should have to be provided and that movement should only be able to be done programmatically with multiple individuals involved in each step of the process. This will complicate any plans by nefarious actors.

如果必须将数据移出培训环境,则必须提供多个执行官的批准,并且只能以编程方式完成此过程的每个步骤,涉及多个人。 这将使邪恶分子的任何计划变得复杂。

敏捷文化是成功的关键因素 (An Agile Culture is a Critical Success Factor)

While technology and process will aid in security of AI/ML during steady state operation. Building the environment in the first place requires that the “build team” be structured for success. There are cultural issues in the adoption of new technology and cloud (as there is with any change) and it is important to get organizational buy in. This is particularly true with Information Security.

虽然技术和过程将有助于稳定状态操作期间AI / ML的安全。 首先,构建环境要求“构建团队”的结构要成功。 新技术和云的采用存在文化上的问题(与任何变化一样),因此,必须让组织参与进来。这对于信息安全尤其如此。

To bridge the cultural issues engaging information security and privacy, making them part of the AI/ML implementation team and allowing them to determine the benchmarks that define when the enterprise is suitably protected, facilitates buy in and brings the real experts to the table. The key, is to ensure that the information security resource on the team is senior enough and suitably empowered to make the decisions necessary.

为了弥合涉及信息安全和隐私的文化问题,使它们成为AI / ML实施团队的一部分,并允许他们确定定义企业何时受到适当保护,促进购买并将真正的专家带到桌面的基准。 关键是要确保团队中的信息安全资源足够高级,并且有权进行必要的决策。

对可重复性,可追溯性,可验证性和解释性的需求 (The need for Reproducibility, Traceability, Verifiability and Explainability)

Enterprise’s need for model reproducibility, traceability, verifiability, and explainability are driving changes to the traditional AI/Machine Learning delivery lifecycle, and now have become a fundamental requirement for data science in large enterprises.

企业对模型可再现性,可追溯性,可验证性和可解释性的需求正在推动传统AI /机器学习交付生命周期的变化,并且现在已成为大型企业对数据科学的基本要求。

Why are these requirements important? In financial services, reproducibility, traceability, and verifiability are explicitly regulated (ie: in the European Union, United States, and Canada) and cannot be overlooked. But similar requirements are also found in many other industries from health care and biotech to government security. In fact, now even enterprises in modestly regulated industries are finding that the benefits of reproducibility, traceability, and verifiability far outweigh their costs.

为什么这些要求很重要? 在金融服务中,可重复性,可追溯性和可验证性受到明确规定(即:在欧盟,美国和加拿大),并且不容忽视。 但是,从医疗保健,生物技术到政府安全等许多其他行业也发现了类似的要求。 实际上,现在即使是受管制程度不高的行业中的企业也发现,可重复性,可追溯性和可验证性的好处远远超过了其成本。

The level of confidence needed can typically be achieved through a documented and automated model lifecycle (aka MLOps or ModelOps) that continually challenges the efficacy of models, trains new ones and, at user request, deploys new models to the inference/ run time environment all at the click of a mouse.

所需的置信度通常可以通过文档化的自动模型生命周期(也称为MLOps或ModelOps)来实现,该生命周期不断挑战模型的有效性,训练新模型,并应用户要求将新模型部署到推理/运行时环境中。只需单击鼠标。

How does cloud address this? For several reasons: first, cloud is the only cost effective way to store massive data files (and their multiple versions and lineage) consumed in AI/ML. Secondly, only cloud offers the scale required to address the intensely iterative AI/ML lifecycle required to support repeated verification and explainability testing. Only cloud offers the self-serve capabilities that enable an agile culture and automated infrastructure.

云如何解决这个问题? 出于以下几个原因:首先,云是存储AI / ML中使用的海量数据文件(及其多个版本和谱系)的唯一经济高效的方法。 其次,只有云才能提供解决支持重复验证和可解释性测试所需的高度迭代的AI / ML生命周期所需的规模。 只有云提供了自助服务功能,可以实现敏捷文化和自动化基础架构。

As AI/ML becomes more of an essential service to any organization. This level of automation will be needed in order to scale deployments and actually condense model iteration cycle times to address growing demand. Organizations that fail to implement suitable automation will have AI/ML become a victim of its own success.

随着AI / ML成为任何组织的一项必不可少的服务。 为了扩展部署并实际压缩模型迭代周期时间,以满足不断增长的需求,将需要这种自动化水平。 无法实施合适的自动化的组织将使AI / ML成为其自身成功的受害者。

下一步不是什么……现在是什么 (It’s not What’s Next…It’s What’s Now)

Movement of AI/ML ecosystem to the cloud is not a step for the future. It is a step for today. In order to actually make AI/ML a production grade service that is a key component of decision making, governance, problem solving and profitability of organizations, it is imperative to move beyond the PoC stage and take the next step in the evolution of this promising technology.

AI / ML生态系统向云的迁移并不是未来的一步。 这是今天的一步。 为了使AI / ML真正成为生产级服务,这是组织的决策,治理,问题解决和盈利能力的关键组成部分,必须超越PoC阶段,并在这一有希望的发展中迈出下一步技术。

Cloud not only has the promise of moving AI/ML out from underneath the desks of data scientists and data engineers. The scalability of the platforms and hardened, production grade nature of these environments, will allow industry to accelerate realization of other benefits associated with this exciting technology. The simplistic nature of many of the “under desk” AI/ML environments will have the capability to exploit complexities like feature stores, deep learning and more robust natural language processing. This will ultimately result in a better value proposition for the technology.

云不仅有望将AI / ML从数据科学家和数据工程师的办公桌下移出。 平台的可扩展性以及这些环境的强化,生产级性质,将使行业加速实现与此令人兴奋的技术相关的其他好处。 许多“桌面式” AI / ML环境的简单性将具有开发复杂性的能力,例如功能存储,深度学习和更强大的自然语言处理。 最终将为该技术带来更好的价值主张。

翻译自: https://medium.com/@bmj6708/ai-ml-is-dead-long-live-ai-ml-8fb9647376c3

ml ai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值