基于深度学习的病理
计算机视觉/深度学习/医学影像 (COMPUTER VISION/ DEEP LEARNING/ MEDICAL IMAGING)
In the last part, we started an introductory discussion on the present state of Deep Learning in histopathology, we discussed Histopathology, Digital Histopathology, the possibilities of Machine Learning in the area, the various applications, followed by a detailed discussion of the challenges involved in working with Digital Microscopic Slide Images and in the application of Deep Learning Algorithms to them.
在最后一部分中 ,我们开始就组织病理学中深度学习的现状进行介绍性讨论,讨论了组织病理学,数字组织病理学,该领域机器学习的可能性,各种应用程序,然后详细讨论了其中涉及的挑战与数字显微幻灯片图像配合使用,并在它们中应用深度学习算法。
In this blog, we shall be discussing in greater detail the applicability of Deep Learning to Histopathology from a methodological perspective along with the tasks it helps accomplish using relevant work for illustration.
在这个博客中,我们将从方法论的角度更详细地讨论深度学习在组织病理学中的适用性,以及使用相关工作进行说明有助于完成深度学习的任务。
The applicability of deep learning can be studied in terms of the tasks it performs or in terms of the learning paradigm, which is the classification we shall be using in this writeup. The different learning algorithms, viz a viz Deep Learning for histopathology, along with the tasks are visualized in the following overview.
可以根据深度学习执行的任务或学习范式来研究深度学习的适用性,这是我们在本文中将使用的分类。 在下面的概述中将可视化不同的学习算法,即组织病理学的深度学习,以及任务。
Based on these, a number of DL models have been proposed in the literature that are traditionally based on convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs), auto-encoders(AEs) and other variants.
基于这些,在文献中已经提出了许多基于卷积神经网络(CNN),递归神经网络(RNN),生成对抗网络(GAN),自动编码器(AE)和其他变体的DL模型。 。
监督学习 (Supervised Learning)
Among the supervised learning techniques, we identify three major canonical deep learning models based on the nature of tasks that are solved in digital histopathology: Classification, Regression, and Segmentation.
在有监督的学习技术中,我们根据在数字组织病理学中解决的任务的性质,确定三种主要的规范深度学习模型:分类,回归和分段。
监督分类 (Supervised Classification)
It can be further subdivided into local and global level classification. Local level classification entails identifying cells or nuclei in patches of the whole slide image. Deep Learning has proven extensively successful in pixel-wise prediction by sliding window approach over image patches that are annotated by pathologists as regions containing objects of interest( cells/nuclei) or background.One of the most prominent works in local classification came in 2019 when Qaiser et al¹ in their paper used Persist