引言

YOLO目标检测算法历经发展,目前已经成为了目标检测领域的经典算法。当前,YOLO目标检测算法已经更新到YOLOv10,但从大家的反映来看,YOLOv10的效果并不理想(该算法的创新点是提升检测速度,并不提升精度,去除了NMS的后处理过程),YOLOv9则针对反向传播中距离远的模块学习效果差的问题,提出使用可编程梯度。那么博主今天为何要介绍YOLOv8呢,因为它实在是太好用了。

为什么要学习YOLOv8?

前面博主说YOLOv8好用,那么体现在哪里呢?
首先,相较于其他的YOLO目标检测算法,YOLOv8更像一个算法框架,他里面集成了从v3v9YOLO算法(没错,它有v9)以及RT-DETR,因此环境是通用的,方便我们做对比实验
其次,该框架没有拘泥于目标检测领域,他还包含了分类、分割、姿态估计、追踪等一系列计算机视觉任务。
最后,该算法框架其实都是在调包,改进起来十分简单,方便水创新点。(当然还是希望大家能够知其然知其所以然)
综上所述,无论是从发论文还是项目学习角度来看,YOLOv8真的非常适合大家去学习。

那么我们便开始YOLOv8的学习吧!

YOLOv8模型结构

下面是YOLOv8的模型结构,可以看到,YOLO目标检测模型的整体架构基本已经确定了,其包含骨干特征提取层(Backbone),特征融合模块(Neck),检测头(Head)。

当然,今天博主并不是要讲这些模块的实现和原理,而是从源码的角度告诉大家该如何去改进算法。

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_2d

从水论文的角度来看,改进较为简单的便是模块的增改,或是损失函数的替换(这里博主说的是直接用别人的成果,如果你自己提出了新的模块或损失函数的话那是非常厉害的),这种改进就是缝缝补补,没有什么创新的,但事实上,为了应对学业要求,很大部分人不得不采用这种方式去来水一篇论文。

那么,话不多说,我们开整!

添加SCConv模块

本章创新为融合SCconv的特征提取方法,顾名思义就是将SCconv模块融合到YOLOv8的骨干特征提取网络部分(backbone),首先我们了解一些SCconv

SCConvCVPR2023收录的一个即插即用的空间和通道重建卷积模块,其结构如下:

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_2d_02

 SCconv论文下载地址

同时,在论文中也提供了实现代码:

'''
Description: 
Date: 2023-07-21 14:36:27
LastEditTime: 2023-07-27 18:41:47
FilePath: /chengdongzhou/ScConv.py
'''
import torch
import torch.nn.functional as F
import torch.nn as nn 


class GroupBatchnorm2d(nn.Module):
    def __init__(self, c_num:int, 
                 group_num:int = 16, 
                 eps:float = 1e-10
                 ):
        super(GroupBatchnorm2d,self).__init__()
        assert c_num    >= group_num
        self.group_num  = group_num
        self.weight     = nn.Parameter( torch.randn(c_num, 1, 1)    )
        self.bias       = nn.Parameter( torch.zeros(c_num, 1, 1)    )
        self.eps        = eps
    def forward(self, x):
        N, C, H, W  = x.size()
        x           = x.view(   N, self.group_num, -1   )
        mean        = x.mean(   dim = 2, keepdim = True )
        std         = x.std (   dim = 2, keepdim = True )
        x           = (x - mean) / (std+self.eps)
        x           = x.view(N, C, H, W)
        return x * self.weight + self.bias


class SRU(nn.Module):
    def __init__(self,
                 oup_channels:int, 
                 group_num:int = 16,
                 gate_treshold:float = 0.5,
                 torch_gn:bool = True
                 ):
        super().__init__()
        
        self.gn             = nn.GroupNorm( num_channels = oup_channels, num_groups = group_num ) if torch_gn else GroupBatchnorm2d(c_num = oup_channels, group_num = group_num)
        self.gate_treshold  = gate_treshold
        self.sigomid        = nn.Sigmoid()

    def forward(self,x):
        gn_x        = self.gn(x)
        w_gamma     = self.gn.weight/sum(self.gn.weight)
        w_gamma     = w_gamma.view(1,-1,1,1)
        reweigts    = self.sigomid( gn_x * w_gamma )
        # Gate
        w1          = torch.where(reweigts > self.gate_treshold, torch.ones_like(reweigts), reweigts) # 大于门限值的设为1,否则保留原值
        w2          = torch.where(reweigts > self.gate_treshold, torch.zeros_like(reweigts), reweigts) # 大于门限值的设为0,否则保留原值
        x_1         = w1 * x
        x_2         = w2 * x
        y           = self.reconstruct(x_1,x_2)
        return y
    
    def reconstruct(self,x_1,x_2):
        x_11,x_12 = torch.split(x_1, x_1.size(1)//2, dim=1)
        x_21,x_22 = torch.split(x_2, x_2.size(1)//2, dim=1)
        return torch.cat([ x_11+x_22, x_12+x_21 ],dim=1)


class CRU(nn.Module):
    '''
    alpha: 0<alpha<1
    '''
    def __init__(self, 
                 op_channel:int,
                 alpha:float = 1/2,
                 squeeze_radio:int = 2 ,
                 group_size:int = 2,
                 group_kernel_size:int = 3,
                 ):
        super().__init__()
        self.up_channel     = up_channel   =   int(alpha*op_channel)
        self.low_channel    = low_channel  =   op_channel-up_channel
        self.squeeze1       = nn.Conv2d(up_channel,up_channel//squeeze_radio,kernel_size=1,bias=False)
        self.squeeze2       = nn.Conv2d(low_channel,low_channel//squeeze_radio,kernel_size=1,bias=False)
        #up
        self.GWC            = nn.Conv2d(up_channel//squeeze_radio, op_channel,kernel_size=group_kernel_size, stride=1,padding=group_kernel_size//2, groups = group_size)
        self.PWC1           = nn.Conv2d(up_channel//squeeze_radio, op_channel,kernel_size=1, bias=False)
        #low
        self.PWC2           = nn.Conv2d(low_channel//squeeze_radio, op_channel-low_channel//squeeze_radio,kernel_size=1, bias=False)
        self.advavg         = nn.AdaptiveAvgPool2d(1)

    def forward(self,x):
        # Split
        up,low  = torch.split(x,[self.up_channel,self.low_channel],dim=1)
        up,low  = self.squeeze1(up),self.squeeze2(low)
        # Transform
        Y1      = self.GWC(up) + self.PWC1(up)
        Y2      = torch.cat( [self.PWC2(low), low], dim= 1 )
        # Fuse
        out     = torch.cat( [Y1,Y2], dim= 1 )
        out     = F.softmax( self.advavg(out), dim=1 ) * out
        out1,out2 = torch.split(out,out.size(1)//2,dim=1)
        return out1+out2


class ScConv(nn.Module):
    def __init__(self,
                op_channel:int,
                group_num:int = 4,
                gate_treshold:float = 0.5,
                alpha:float = 1/2,
                squeeze_radio:int = 2 ,
                group_size:int = 2,
                group_kernel_size:int = 3,
                 ):
        super().__init__()
        self.SRU = SRU( op_channel, 
                       group_num            = group_num,  
                       gate_treshold        = gate_treshold )
        self.CRU = CRU( op_channel, 
                       alpha                = alpha, 
                       squeeze_radio        = squeeze_radio ,
                       group_size           = group_size ,
                       group_kernel_size    = group_kernel_size )
    
    def forward(self,x):
        x = self.SRU(x)
        x = self.CRU(x)
        return x


if __name__ == '__main__':
    x       = torch.randn(1,32,16,16)
    model   = ScConv(32)
    print(model(x).shape)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.

当然,博主在这里并不是要对SCconv的结构抑或是背后的逻辑进行解读,博主只是想告诉大家如何将该模块应用到YOLOv8(当然也可以是任意一个YOLOv8里集成的模型),其实,要做到这一点并不难,大家按照这个步骤来即可:

确定添加位置

对于这样的模块,我们一般会将其添加到骨干特征提取模块(Backbone),当然这个位置任意,只要效果好了即可,这里博主选择Backbone中的ConvC2f 模块后面。
这里顺带对模型的配置文件进行讲解,其遵循如下定义规则:

[from, repeats, module, args]表示层的来源、重复次数、模块类型和参数。
  • 1.
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2  -1代表将上层的输入作为本层的输入。第0层的输入是640*640*3的图像。Conv代表卷积层,相应的参数:64代表输出通道数,3代表卷积核大小k,2代表stride步长。 
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]#C2f模块,3代表本层重复3次。128代表输出通道数,True表示Bottleneck有shortcut。
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.

我们首先开启一次训练,看下其结构,我打算将SCconv模块加入到ConvC2f之间

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_算法_03

可以看到,模块的输入维度是由上一个模块的输出维度所确定的,以C2f模块为例,其输入维度即为Conv的输出维度64,那么我们要将SCConv模块加入到ConvC2f之间的话,就需要让SCConv的输入维度为64(对应Conv的输出维度),让SCConv的输出维度为64(对应C2f的输入维度)

确定模块的输入输出

在确定了ConvC2f模块的关联后,我们就需要让SCConv与其进行适配了,首先通过代码来模拟一下其结果:

if __name__ == '__main__':
    x       = torch.randn(1,256,80,80)
    model   = ScConv(256)
    print(model(x).shape)
  • 1.
  • 2.
  • 3.
  • 4.

输出结果为:torch.Size([1, 256, 80, 80]),即输入输出前后没有发生维度上的变化,符合要求。

创建SCConv类

接下来便是如何修改代码,从而让该模块与YOLOv8相融合了
我们在首先在如下文件夹下新建一个mine.py,这个名字随便起,随后将SCConv的代码粘贴到该文件中。

添加引用(可跳过)

当然如果你想要更规范的话,可以将代码粘贴到\ultralytics\nn\modules\block.py文件中,并
在ultralytics/nn/modules/init.py文件中加入引用,这看你个人要求。

from .block import (
    C1,
    C2,
    C3,
    C3TR,
    DFL,
    SPP,
    SPPELAN,
    SPPF,
    ADown,
    BNContrastiveHead,
    Bottleneck,
    BottleneckCSP,
    C2f,
    C2fAttn,
    C3Ghost,
    C3x,
    CBFuse,
    CBLinear,
    ContrastiveHead,
    GhostBottleneck,
    HGBlock,
    HGStem,
    ImagePoolingAttn,
    Proto,
    RepC3,
    RepNCSPELAN4,
    ResNetLayer,
    Silence,
    ScConv,
)
__all__ = (
    "Conv",
    "Conv2",
    "LightConv",
    "RepConv",
    "DWConv",
    "DWConvTranspose2d",
    "ConvTranspose",
    "Focus",
    "GhostConv",
    "ChannelAttention",
    "SpatialAttention",
    "CBAM",
    "Concat",
    "TransformerLayer",
    "TransformerBlock",
    "MLPBlock",
    "LayerNorm2d",
    "DFL",
    "HGBlock",
    "HGStem",
    "SPP",
    "SPPF",
    "C1",
    "C2",
    "C3",
    "C2f",
    "C2fAttn",
    "C3x",
    "C3TR",
    "C3Ghost",
    "GhostBottleneck",
    "Bottleneck",
    "BottleneckCSP",
    "Proto",
    "Detect",
    "Segment",
    "Pose",
    "Classify",
    "TransformerEncoderLayer",
    "RepC3",
    "RTDETRDecoder",
    "AIFI",
    "DeformableTransformerDecoder",
    "DeformableTransformerDecoderLayer",
    "MSDeformAttn",
    "MLP",
    "ResNetLayer",
    "OBB",
    "WorldDetect",
    "ImagePoolingAttn",
    "ContrastiveHead",
    "BNContrastiveHead",
    "RepNCSPELAN4",
    "ADown",
    "SPPELAN",
    "CBFuse",
    "CBLinear",
    "Silence",
    "ScConv",#all中加入引用
)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.

随后在tasks.py中引入SCConv模块,让配置文件知道该去哪里读取:

from ultralytics.nn.modules.mine import ScConv
  • 1.

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_算法_04

修改模型结构

随后只需要修改对应的yaml配置文件即可:

[-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 1, ScConv, [64]]
  - [-1, 6, C2f, [256, True]]
  • 1.
  • 2.
  • 3.

至此,修改便完成了,是不是非常简单,然后我们训练一下看看是否能够跑通?
在加载模型时,发现只能加载一个,即我们修改了yaml文件,就不能只有YOLOv8的预训练模型,由于模型将重头开始训练,这是十分令人苦恼的。

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_2d_05

随后开启训练,根据下面的网络层数,参数量以及GFLOPs来看,加入了SCconv模块后的计算复杂度提升了很多,这就需要更多的计算资源。

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_v8_06


YOLOv8目标检测算法改进之融合SCconv的特征提取方法_算法_07

由于没有使用预训练模型,因此刚开始的训练效果很差

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_v8_08

随着训练轮次的增加,其效果开始提升:

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_2d_09


Closing dataloader mosaic

最终的训练结果如下:

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_v8_10

从结果来看,似乎并不太理想,当然这很大程度上是由于博主没有使用YOLOv8的预训练模型所导致的。

随后,博主让其加载了YOLOv8的预训练权重:

from ultralytics import YOLO
    model = YOLO("/ultralytics\cfg\models/v8\yolov8.yaml")  # build a new model from YAML
    model.load("yolov8n.pt")
    results = model.train(data="/ultralytics\cfg\datasets\cocomine.yaml", epochs=100, imgsz=640,batch=8,workers=2)
  • 1.
  • 2.
  • 3.
  • 4.

由开始的训练效果可知,使用了预训练模型后,起点高了那么一点,至于最终的效果,敬请期待。

YOLOv8目标检测算法改进之融合SCconv的特征提取方法_目标检测_11

总结

经过上述过程,我们便将SCconv模块插入到了YOLOv8模型中,当然这个改进是十分简单的,我们可以对SCconv模块再进行改进,让其更加的适配YOLOv8检测模型,同时我们需要记住的是,写一篇论文不但要求你的创新点要新颖,如何去描述你的创新更是重中之重,正所谓做的好不如说的好(博主还是希望能够既做的好,又说得好)。