YOLOv8目标检测创新改进与实战案例专栏
专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例
介绍
摘要
在遥感中,小物体的检测任务由于特征表示不足和背景混淆等问题而变得艰难。特别是当算法需要部署在板载系统上进行实时处理时,需在有限的计算资源下进行准确性和速度的广泛优化。为了解决这些问题,本文提出了一种高效的检测器,称为特征增强、融合和上下文感知YOLO(FFCA-YOLO)。FFCA-YOLO包含三个创新的轻量级和即插即用的模块:特征增强模块(FEM)、特征融合模块(FFM)和空间上下文感知模块(SCAM)。这三个模块分别增强了网络的局部区域感知、多尺度特征融合和全局关联跨通道与空间的能力,同时尽量避免增加复杂性。因此,小物体的弱特征表示得到了增强,混淆的背景得到了抑制。使用两个公共遥感数据集(VEDAI和AI-TOD)和一个自建数据集(USOD)进行小物体检测,以验证FFCA-YOLO的有效性。FFCA-YOLO在mAP50指标上分别达到了0.748、0.617和0.909,超过了几个基准模型和最先进的方法。同时,在不同的模拟退化条件下也验证了FFCA-YOLO的鲁棒性。此外,为了在确保效率的同时进一步减少计算资源消耗,基于部分卷积(PConv)对FFCA-YOLO的骨干和颈部进行了重构,优化出一个轻量版本(L-FFCA-YOLO)。L-FFCA-YOLO速度更快,参数规模更小,计算功率要求更低,但与FFCA-YOLO相比精度损失很小。源代码将可在https://github.com/yemu1138178251/FFCA-YOLO获取。
文章链接
论文地址:论文地址
代码地址:代码地址
基本原理
FFCA-YOLO(Feature Enhancement, Fusion, and Context Aware YOLO)是一种高效的目标检测算法,专门为解决遥感图像中的小目标检测问题而设计。该模型的架构和模块包括三个主要部分:特征增强模块(Feature Enhancement Module, FEM)、特征融合模块(Feature Fusion Module, FFM)和空间上下文感知模块(Spatial Context Aware Module, SCAM)。以下是FFCA-YOLO模型架构与模块的详细介绍:
模型架构
FFCA-YOLO基于YOLOv5框架进行改进,通过引入FEM、FFM和SCAM三个轻量级且易于插入的模块来增强网络对局部区域的感知、多尺度特征融合和全局关