构造一条二次bezier曲线_[几何学期中抱佛脚]二次曲面的直纹性

二次曲面的直纹性意味着在空间中所有可能的直线集合中存在某些特殊的直线

,它与二次曲面具有某些不寻常的关系,即
上的点全部位于
上. 这种关系理应表示为
之间的代数方程.为此,
我们来考虑一下它们之间能写出什么样的方程,并考察这样的方程的几何意义.

对于一个直线

,可以求出它关于
的共轭直线
.这两条直线的位置关系一般来说是任意的.如果这两条线竟然有交点,那这条直线的位置似乎就不那么平凡.根据上一节的内容,"有交点"这件事情写为:
.

在这种情况下,我们取这两条直线的交点

,那么就可以把
表示为
的形式,期中
上不同于
的任意一点.根据共轭直线的定义,有
.因为
是这两条直线的交点,因此它在
上:
,即
.

注意到

是不共线的四维矢量,因此
也是.既然这样,上述方程成立当且仅当它的系数为0:
.用更传统的形式就是
.

这种形式的意义就很明显了:

表明点
位于二次曲面
上,
表明点
位于
的极面(也就是在
点处的
切面)上.存在这样的点意味着
相切于
.即:

命题1:对直线

与非退化的二次曲面
,
当且仅当
相切.

相切自然是很有用的.但是它仅仅表明直线"局部在曲面上".所谓直纹,它是要求直线"处处在曲面上"!于是,我们应该对这样的

提出比
更高的要求.因为比"两直线相交"更高的要求是"两直线重合",于是,我们猜测:

命题2:

上的直纹当且仅当存在实数
使得

证明:

如果
上的直纹,那么在
上任取两点
,则
均相切.因此同时在切面
上.因为
不相同,因此
.证毕.

仍然设
,把
展开为
,它等价于两个方程
.进一步化简得到三个方程
.因此对于任意
,有
.因此
上的直纹.

为了进一步研究直纹的性质,需要求解方程

.具体写出来,是
.

可以发现,如果把

所在的
所有2-形式看成6维的线性空间
,那等式左边就是
到自身的线性映射,
因此这个方程成为特征方程!

特征方程中包含丰富的信息.通过取定一个坐标系,可以把

化为对角的.在这个坐标系下通过并不复杂的计算可以证明,
这个方程有实根当且仅当
的号差为(+,+,-,-).此时特征多项式是关于
的六次多项式.尽管如此,它的解却只有两个
,它们均是三重根.与此同时,它们对应的特征向量空间也是三维的.于是我们就得到了2形式空间
的直和分解:
.

(注:这个方程是我在30号楼前荡秋千时解出来的......可见并不是特别复杂)

有必要强调一点:并不是所有的2-形式都对应直线:2形式通常被写为

这种样子,而它通常是非退化的.直线作为形如
的2-形式,
总是退化的.换句话说,为了得到真正表示直线的那些2-形式,需要加上行列式为0的条件.它的后果是,当我们得到2-形式构成的某个线性空间(例如刚才我们得到的
),其中的所有直线2-形式只能构成它的低一维的非线性子流形.

此外还有必要强调,长时间荡秋千后下来会重心不稳容易摔跤.柿子树虽然会掉下来柿子,但是很涩,并不好吃.

74e425f79253dc5f32c3f25ada99e961.png

最后要指出的是,乘风破浪志四方,城环为你来护航(其实我只是猜测她们是城环的...).感谢他们的社团设计了如此棒的地方!

从以上的结果中我们得到了很多信息.

首先,我们证明了只有号差为两正两负的二次曲面才有直纹性;

其次,我们证明了这些直纹分为两族,分别对应特征值

.

重要的是,我们发现松鼠埋在地下的核桃长出了树苗.其中,30楼的小姐姐们精心照料它们,并系上了红绳以防止它们被无情的割草机撕成碎片.

b6dc9153ca4b1cb31e39cb6c17c724a1.png

接下来我们分析这些直纹的数量.对这两族直纹之一,它所在的空间

是3维的,行列式为零减去1维,齐次坐标再减去1维,于是只剩下1维.这正好印证了我们在上一节中从图像中得到的结论:"直纹分为两族,其中每族有一个自由度".

到目前为止,我们所得到的结论都仅仅是用代数工具来说明二次曲面为什么具有图像中已经给出的直纹性.但是这一工具的用途却不止于此.它的真正好处体现在,我们把直线的集合嵌入进了一个线性空间

.

命题3:设

为非退化直纹二次曲面
的一族直纹作为2-形式构成的集合.若已知
,则任意
,存在不全为0的实数
使得
.

证:容易证明

线性无关(事实上,若
,且这四个点不共面,那么对于非零的
,
必定是非退化的,它不可能等于
),因此它构成
的一组基,因此
中所有元素都可以表示为这样的线性组合,自然包括其中的直线.证毕.

从这个角度看问题非常有好处:对任意一条直纹二次曲面,它是被它的一族直纹唯一确定的.因此,我们给出三个2-形式

,进而生成线性空间
,再取出其中所有的直线
作为集合
,便得到了这条二次曲面.换句话说,二次曲线是什么?不过就是这个线性空间
而已! 这相当于,我们给出了"二次曲面"这一概念的另一种观点:

推论1:非退化的二次曲面完全对应于

中非退化
(这一退化性此处没有给出定义,但这不影响理解) 的三维子空间
.

推论2:过互不相交的三条直线存在唯一的二次曲面.

如果我们已有三维子空间

,那我们可以先构造出它对应的二次曲面
,再用特征方程得到另一组直纹的线性空间
.但其实不必这么麻烦,我们可以直接通过线性的外代数来构造
:
,反之亦然(其原理是,一族直纹中的任意一条直线必与另一族直纹的每一条直线相交).可见,直和分解
中的
的确有种互补的地位.

即使仅仅从几何的角度看,二次曲面的这两族直纹也是非常有用的.比如,对二次曲面

上的任意一点
,它都唯一地对应于相交于这一点的两条直纹
.反之,给定切于
任意一个平面
,它都经过这一点的两条直纹.于是,只要我们取两条直纹
,我们就可以非常自由地表示它们在
上的交点以及它们张成的切面.这相当于给出了二次曲面的参数式.

直线的"共轭"也可以利用直纹来定义.现在我们给定一条直线

,它将与
交于两点
,于是产生这两点的四条直纹
.这四条直纹将会再产生两个交点
,此时
的连线即为
的共轭直线.通过这一几何意义,我们看出共轭关系是相互的.

借助直线共轭的几何意义,可以进一步表示极点和极面的关系.对于一点

,我们任取两条过a的直线
,作它们的共轭直线
,此时这两条直线张成的平面即为
的极面.

这些共轭关系虽然有趣,可是,极面不能代替脸面,直线无助于越过分数线,即使玩得再秀,极点也永远变不成绩点!所以,我们应该把几何与代数的手段结合,以便考虑这样非常有用的问题:

既然我们已经证明了推论2:过互不相交的三条直线存在唯一的二次曲面.那么,如何把这条二次曲面

用这三条直线
表示出来呢?

一个非常自然的想法是,既然有了

,就可以得到它们生成的线性空间
.如果这样的
在曲面上,就必有
使得
,而这只需要引入
在这组基下的系数.不过,这条路我并没走通:不能从中得到我希望得到的二次方程.

我们采取这样的办法:对于空间中任意一点

,我们构造一个方程来判断它在不在
生成的二次曲面上.这个方程的形式可能比较复杂,但只要我们写出来了正确的方程,它就必定等价于标准的方程
.

为了构造这个方程,我们借助于几何直观.对于空间中一点

,它和直线
在一起可以生成一个平面
经过它们,即
,简写为
.类似地,我们对三条直线都进行如此的构造,便得到了三个平面
.在一般情况下,空间中的三个平面会交于唯一一点
,用外代数的语言写为
.值得注意的是,从这三个平面的构造过程可以发现,这三个平面都经过
-------这也就意味着这个交点正是
自己.用代数语言,就是存在实数
,使得
,也就是
.它对于任意的
恒成立.既然这是关于
的恒等式,而左边是三次的,右边是一次的,所以
其中的系数
作为关于
的函数必定是二次的
.

现在注意以下的事实:空间中的三个平面未必一定交于一点.如果平面间的关系是退化的,它们的交集可能是一条直线.就

而言,它们的
交是直线当且仅当
,也就是
.从另一个角度看,如果
上,那么就可以找到穿过它的两条直纹,分别在
中.现在我们取属于
的那条直线
,根据直纹面的性质,它跟
中的所有直线,包括
,都各有一个交点.因此
生成的三个平面
都将包含
,于是它们的交便是
而不是一点!这便产生了退化的情景.反之,可以证明如果
不在
上,便不会出现退化情景.

综合上一段的讨论,我们得知,

当且仅当
在二次曲面上.
既然
是关于
的二次齐次函数,那么就必定等价于
.于是,我们得到了以下的结论:

命题4:设

是互不相交的直线,则存在唯一的二次曲面
包含这些直线,并且存在某个(不重要的)常数
使得恒等式
成立.

这样我们就求出了所需的二次曲面方程.在具体应用时,需要注意两个点:

1.这里的

的指标在下,即要写成平面相交的形式,不要写成两点确定的直线

2.具体操作时,不需要计算等式两端的整个向量,只需要计算第4分量即可.那样只需要计算

排成的3*4矩阵前三列构成的3阶行列式.

最后,我们再来关心一下空间

(代指
)的性质.它并只是一个三维线性空间,它上面还有一个函数
.这怎么办呢?

表面上看,作为四维矩阵的行列式,

是一个四次的函数,非常难以研究.但实际上并非如此,因为我们实际上只关心这个行列式是否为0.此外,对反对称矩阵的行列式,有以下定理成立:

定理:对反对称n*n方阵

,

1.若

为奇数,则

2.若

为偶数,则存在一个关于
中的元素
的齐次多项式
,使得
.这一多项式称为Pfaffian多项式.例如,对
的情况,有
.记忆方式是,这三组数的排列都构成1234的偶置换.

利用这个定理,我们得到,

中的元素
是直线的条件是
.

这一事实是重要的.我们在

中选定一组基
,则
中任意元素
可以写为
的形式(实际上就是把抽象的矢量
在一组基下写成
).于是,
是关于
二次齐次方程.这是我们很熟悉的.因为在
中,我们并不关心矢量的大小,只关心它的方向,因此它
正是射影平面,而
成为其上的度规,也就是一条圆锥曲线.所以,

命题5:如果把

的三维子空间
看成射影平面,则
中所有代表直线的元素构成射影平面的圆锥曲线.

在这个命题中,"三维"其实是不重要的,因为无论多少维,

这一函数都是二次的:

命题5':如果把

的子空间
看成射影空间,则
中所有代表直线的元素构成射影空间中的高维"二次曲面",
是它对应的张量.

作为推论,

本身也是一个5维射影空间,其中的退化元素构成其中的4维二次曲面.但是
期中考试不考这些,因此 命题5'与推论没有任何价值.

有价值的是,我们看到圆锥曲线

的一族直纹作为2-形式,本身就具有圆锥曲线的结构.我们已经证明,圆锥曲线作为射影直线的二次嵌入,其本身具有交比的结构,因此我们可以自然地构造一族直纹的交比.既然经过圆锥曲面上的点对应两条直纹,如果有4个点,我们就可以把它对应的两族直纹中各自的4个点分别计算交比,得到两个值
,这个有序数对称为曲面上四点的交比.

这时我们会想,并非只有这一种方式来把二次曲面联系到圆锥曲线:如果用一个平面

去截这个二次曲面,同样会得到一条圆锥曲线,于是二次曲面与平面的交线上的4点可以直接定义交比.这一交比和直纹的交比有何关系呢?注意到,
是关于
的线性映射,保持交比不变,所以它们相等.于是我们证明了:

命题6:设平面

与二次曲面
相截得到圆锥曲线
,
是一族直纹中的四条直线.那么它们作为直纹的交比等于它们与
的4个交点在
上的交比.

因为从这4个交点出发还可以得到另外那一族直纹,它们同样也得有交比.为了不使命题6自相矛盾,这两个交比需要相等.因此我们得到推论:

推论3:设

上的四个点,那么它们的交比
满足
当且仅当
共面.

注意到,在复变函数中,我们学过以下定理:

定理:设

是4个复数,则它们的交比为实数当且仅当它们在复平面上的点满足四点共圆.

很显然,这个定理与推论3表述的是同一个规律.鉴于我们已经给出了6个命题却没有给出任何练习,这里的严格证明将留作习题.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值