废柴的高三学生趁着寒假写第一篇文章...
齐次化联立是一种解决斜率定点问题的方法,但通过知乎上其他文章发现其有较多限制。笔者通过一点点研究将这种方法稍微一般化了一下,成功消除了一部分限制,然后发现大多数的这类问题都可以用此方法解决。
笔者学习这种方法首先是看了 @Dylaaan 大佬的一篇文章
Dylaaan:【解析几何】双联立(齐次化处理)解决定点问题zhuanlan.zhihu.com(本文是在这篇文章的基础上写的,建议没了解过这种方法的同学食用前先看一下Dylan的文章)
文章里用了齐次化联立后,相较于常规的联立+韦达定理直接计算,减少了很多计算量。但事实上对于这一类题,文章给出的例题本身就是计算量偏小的题目。
下面是一点对此方法的推广。Dylan在文末中提到一道计算量很大的题目,笔者也成功找出了齐次化联立解决的方法,而且计算量比常规计算小很多(应该吧,笔者太菜导致常规计算没算出来TAT,只能找奇技淫巧)下面也会提到。
刚看完后觉得很有意思,二次方程一消项,就变成了一次方程,从而得到对应的直线方程,很快能找出定点。
然后笔者就找了几道作业题想试一下,结果发现
根本消不掉!
于是就深入研究了一下这种方法。
先来描述一下这类问题:过圆锥曲线
齐次化联立就是让两条直线合起来写为一个二次方程,让这个二次方程与圆锥曲线方程联立,所得到的方程再通过消项变为一次方程。只要这个消项过程中没有消去 点
在Dylan的文章中,最开始取的这个点
但既然都是过定点直线,按理来说就应该有相应的方法来消项变为一次。我们先看一下消项的原理。
齐次化联立的第一步是把两条直线相乘得到双直线方程
明白这一点后就可以有目的地处理方程,从而转化为直线方程。
可以随手编一个例题来看一下
首先得出直线
相乘得到