双曲线和直线联立公式_齐次化联立的进阶技巧

本文介绍了如何扩展齐次化联立方法来解决双曲线和直线联立的问题,减少了计算量。作者通过深入研究,揭示了这种方法的消元原理,并给出一般化的步骤,适用于椭圆、双曲线和抛物线。文章通过实例展示如何应用该技巧,并讨论了定斜率直线的情形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3951493c8b0a0c52f1386bcbd9100e4f.png

废柴的高三学生趁着寒假写第一篇文章...

齐次化联立是一种解决斜率定点问题的方法,但通过知乎上其他文章发现其有较多限制。笔者通过一点点研究将这种方法稍微一般化了一下,成功消除了一部分限制,然后发现大多数的这类问题都可以用此方法解决。

笔者学习这种方法首先是看了 @Dylaaan 大佬的一篇文章

Dylaaan:【解析几何】双联立(齐次化处理)解决定点问题​zhuanlan.zhihu.com
e78c1133f372c043a44ebb551e60d3d1.png

(本文是在这篇文章的基础上写的,建议没了解过这种方法的同学食用前先看一下Dylan的文章)

文章里用了齐次化联立后,相较于常规的联立+韦达定理直接计算,减少了很多计算量。但事实上对于这一类题,文章给出的例题本身就是计算量偏小的题目。

下面是一点对此方法的推广。Dylan在文末中提到一道计算量很大的题目,笔者也成功找出了齐次化联立解决的方法,而且计算量比常规计算小很多(应该吧,笔者太菜导致常规计算没算出来TAT,只能找奇技淫巧)下面也会提到。

刚看完后觉得很有意思,二次方程一消项,就变成了一次方程,从而得到对应的直线方程,很快能找出定点。

然后笔者就找了几道作业题想试一下,结果发现

根本消不掉!

于是就深入研究了一下这种方法。


先来描述一下这类问题:过圆锥曲线

上的一点
作两条直线
,两条直线的斜率
存在某种等量关系(和或积为某定值),两条直线又分别与
有另外两个交点
,
,则直线
过定点。

齐次化联立就是让两条直线合起来写为一个二次方程,让这个二次方程与圆锥曲线方程联立,所得到的方程再通过消项变为一次方程。只要这个消项过程中没有消去 点

或点
对应的解,所得到的一次方程也就仍然满足
的坐标。再由“两点确定一条直线”知所得一次方程即为直线
的方程。最后根据方程中的参数,整理后写为过定点的直线系方程即可求出定点。

在Dylan的文章中,最开始取的这个点

都是椭圆的顶点。而我们在平常做题时会发现,即使点
不是顶点,得到的直线
仍然是过定点的。但如果进行相同操作,会发现会有一次项和常数项被剩下来,导致无法进行消项。

但既然都是过定点直线,按理来说就应该有相应的方法来消项变为一次。我们先看一下消项的原理。

齐次化联立的第一步是把两条直线相乘得到双直线方程

。沿用上面的符号,由于一条直线与圆锥曲线(未退化)至多有两个交点,故这里
的所有交点即
,
。联立
所得到的方程应该能代入这三个点的坐标。而目标方程是直线
的方程,因此就需要消去点
的坐标对应的式子。

明白这一点后就可以有目的地处理方程,从而转化为直线方程。

可以随手编一个例题来看一下

椭圆
上有一点
,
上的两点,直线
和直线
的斜率
满足
.求证:直线
过定点,并求出定点坐标。

首先得出直线

的方程分别为

相乘得到

但这里我们发现,不管是前面的

还是后面的
都带有一次项。由于椭圆方程不含一次项,导致无法消去一次项,也就无法消去
或是
.

此时我们就需要通过

找到一个关于
的关系式

简单变形,得到
,也就是

从而有

将其代入

的方程有

两边同乘以

并约去
得到

下面是比较神奇的一步,消去

项。对比这个方程和
当中
的系数我们先把第二项中的
化为
,方程变为

将此方程与双直线方程

相加得

注意到此时

的系数之比恰和椭圆方程中一样,故有

.代入即可消去所有二次项。整理得

从这里可以看出,

为定值时,方程变为直线系方程。对本题,由
得直线方程为

定点坐标解得

,故直线
过定点

这里需要补充一个引理

我们需要将椭圆和双曲线的第三定义对应的那个性质略作推广一下

椭圆

上一点和左右顶点连线的斜率乘积为定值
,对于双曲线
这一定值为
.

我们可以把左右顶点换为椭圆/双曲线上关于其中心对称的两点,且定值仍然不变。

只需注意到,方程

可以等价变形为
其中
上一点。这个方程可以由点差法证出,由于
都是常数,因此这个方程和
是等价的。

我们把上面最后与

联立的方程记为
,即

在得到这个方程时,我们消去了

并同乘了
.这意味着消去了点
又引入了
.事实上,这里的
是直线
和直线
所合成的双直线方程。而此时两个双直线的交点就不含点
和点
了。不过它们会有4个交点,其中有两个不在
上,而另外两个就是点
和点
(如下图).

c68dfc0537fccbb0493b7366866e281b.png

46d12eedda02a1c110c13d0038e82adf.png

借助

的方程消去
后,由于剩余二次项系数恰成比例,我们也就成功地消去了所有的二次项,从而得到直线
的方程。

这就是最终得到直线方程的原理。虽然

的方程可以由
直接合成得到,但考试过程中如果直接引入这么一个对称点
会有点莫名其妙,因此我们可以假装它是由
直接联立得到的。

下面我们来写下一般情形,即点

上的任意一点时,直线
的方程。

先以椭圆为例。

椭圆

上有一点
.过点
作斜率分别为
的两条直线,各自与
交于另一点,记为点
和点
.则

相乘得

写为
,则

代入整理得

两方程相加,得

最后消去二次项,化简得

至此我们成功写出了直线

方程的一般表达式。

对于双曲线推导是类似的,大家可以自己尝试一下,对于双曲线

,其最终结果为

抛物线是无心二次曲线,没法找中心对称点,但对抛物线其实也有相同的结论。

对抛物线

,其他符号同上,一样有

将抛物线方程写为

,代入消去

此时,没有

项,直接将仅有的
换掉即得

即所求直线的方程。

最后来说下Dylan提到的难题。

椭圆
,过
作两条直线
交椭圆于
四点,两直线斜率满足:
分别是
的中点,求证:直线
过定点。

本题好像和上面的题并不相同,因为定点

并不在椭圆上。但我们应该注意一个东西,设原点为
,则由垂径定理,
,

结合上面对第三定义的推广,这告诉我们,B和C在某个椭圆上。这个椭圆的中心为

的中点,离心率为
.这也就解释了为什么直线
会过定点。

知道轨迹为椭圆只是保证我们能用此方法来求直线方程,如果考场上具体运算时无需说明。我们可以写出这个方程,为

.(考场上可以先说明一下点
和点
在该曲线上)

直线

,
组成的双直线方程为

由上面的椭圆方程得到

代入整理得

椭圆方程中无

项,故仍然要消去
,相加得

由椭圆方程有

.代入消去二次项得

再由

得到直线方程为

故直线

过定点

2.18补充一下

前几天在群里发现一些题目的直线不一定过定点,是斜率一定。

不过这种方法还是适用的,以椭圆为例,来看下出现定斜率直线的情形

最终得到的方程为

要定斜率的话,最终的

前面的系数就需要成固定比例。

对上式整理出

的系数为

的系数为

若已知

为常数,
为参数,两系数成定比需要

(此时分母为0的情况不符合条件,故不考虑)

注意到

,由合比定理知

,即
(舍去)

为常数,
为参数,两系数成定比需要
,即
(舍去)

,即

因此,当

成立时,直线不过定点,但斜率一定

对双曲线,推导是类似的,当

成立时,所得直线定斜率

对抛物线则只有

时直线定斜率。

以上推导过程可以无需记住,知道这些结论的作用是在一些题目中快速转化条件,譬如以下的 题。

椭圆

上有一点
.直线
交于
两点,且满足
.
是坐标原点,求
面积的最大值。(已修改删去第一问)

:设

,

组成的双直线方程为

椭圆

的方程变形为
,即

两方程联立得

的方程相加得

整理后知直线
斜率为定值
.

联立
的方程得

,

,

.当且仅当
时等号成立

本题常规计算的计算量也不算大,但若没找到

斜率为定值
也很难算出来。

相比之下,若是直线过定点但题目中没有提示,常规计算及很不容易发现。下面是16年山东某校的题目(具体哪个学校忘了).一样的,简单修改删去第一问。

双曲线

上有一点
.过
作两条互相垂直的直线,分别与
交于另两点
.求点
到直线
距离的最大值。

:设

,

则两直线组成的双直线方程为

双曲线方程变形为
,即

与双直线方程联立得

的方程相减并代入

故直线

过定点
.不妨记为点

。当
,即
时等号成立。此时
,满足条件。

所以点

到直线
距离的最大值为

笔者第一次做到这题时设直线方程爆算,而且完全不知道直线过定点...然后到现在也懒得用常规方法算一遍(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值