双曲线和直线联立公式_齐次化联立的进阶技巧

本文介绍了如何扩展齐次化联立方法来解决双曲线和直线联立的问题,减少了计算量。作者通过深入研究,揭示了这种方法的消元原理,并给出一般化的步骤,适用于椭圆、双曲线和抛物线。文章通过实例展示如何应用该技巧,并讨论了定斜率直线的情形。
摘要由CSDN通过智能技术生成

3951493c8b0a0c52f1386bcbd9100e4f.png

废柴的高三学生趁着寒假写第一篇文章...

齐次化联立是一种解决斜率定点问题的方法,但通过知乎上其他文章发现其有较多限制。笔者通过一点点研究将这种方法稍微一般化了一下,成功消除了一部分限制,然后发现大多数的这类问题都可以用此方法解决。

笔者学习这种方法首先是看了 @Dylaaan 大佬的一篇文章

Dylaaan:【解析几何】双联立(齐次化处理)解决定点问题​zhuanlan.zhihu.com
e78c1133f372c043a44ebb551e60d3d1.png

(本文是在这篇文章的基础上写的,建议没了解过这种方法的同学食用前先看一下Dylan的文章)

文章里用了齐次化联立后,相较于常规的联立+韦达定理直接计算,减少了很多计算量。但事实上对于这一类题,文章给出的例题本身就是计算量偏小的题目。

下面是一点对此方法的推广。Dylan在文末中提到一道计算量很大的题目,笔者也成功找出了齐次化联立解决的方法,而且计算量比常规计算小很多(应该吧,笔者太菜导致常规计算没算出来TAT,只能找奇技淫巧)下面也会提到。

刚看完后觉得很有意思,二次方程一消项,就变成了一次方程,从而得到对应的直线方程,很快能找出定点。

然后笔者就找了几道作业题想试一下,结果发现

根本消不掉!

于是就深入研究了一下这种方法。


先来描述一下这类问题:过圆锥曲线

上的一点
作两条直线
,两条直线的斜率
存在某种等量关系(和或积为某定值),两条直线又分别与
有另外两个交点
,
,则直线
过定点。

齐次化联立就是让两条直线合起来写为一个二次方程,让这个二次方程与圆锥曲线方程联立,所得到的方程再通过消项变为一次方程。只要这个消项过程中没有消去 点

或点
对应的解,所得到的一次方程也就仍然满足
的坐标。再由“两点确定一条直线”知所得一次方程即为直线
的方程。最后根据方程中的参数,整理后写为过定点的直线系方程即可求出定点。

在Dylan的文章中,最开始取的这个点

都是椭圆的顶点。而我们在平常做题时会发现,即使点
不是顶点,得到的直线
仍然是过定点的。但如果进行相同操作,会发现会有一次项和常数项被剩下来,导致无法进行消项。

但既然都是过定点直线,按理来说就应该有相应的方法来消项变为一次。我们先看一下消项的原理。

齐次化联立的第一步是把两条直线相乘得到双直线方程

。沿用上面的符号,由于一条直线与圆锥曲线(未退化)至多有两个交点,故这里
的所有交点即
,
。联立
所得到的方程应该能代入这三个点的坐标。而目标方程是直线
的方程,因此就需要消去点
的坐标对应的式子。

明白这一点后就可以有目的地处理方程,从而转化为直线方程。

可以随手编一个例题来看一下

椭圆
上有一点
,
上的两点,直线
和直线
的斜率
满足
.求证:直线
过定点,并求出定点坐标。

首先得出直线

的方程分别为

相乘得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值