
废柴的高三学生趁着寒假写第一篇文章...
齐次化联立是一种解决斜率定点问题的方法,但通过知乎上其他文章发现其有较多限制。笔者通过一点点研究将这种方法稍微一般化了一下,成功消除了一部分限制,然后发现大多数的这类问题都可以用此方法解决。
笔者学习这种方法首先是看了 @Dylaaan 大佬的一篇文章
Dylaaan:【解析几何】双联立(齐次化处理)解决定点问题zhuanlan.zhihu.com
(本文是在这篇文章的基础上写的,建议没了解过这种方法的同学食用前先看一下Dylan的文章)
文章里用了齐次化联立后,相较于常规的联立+韦达定理直接计算,减少了很多计算量。但事实上对于这一类题,文章给出的例题本身就是计算量偏小的题目。
下面是一点对此方法的推广。Dylan在文末中提到一道计算量很大的题目,笔者也成功找出了齐次化联立解决的方法,而且计算量比常规计算小很多(应该吧,笔者太菜导致常规计算没算出来TAT,只能找奇技淫巧)下面也会提到。
刚看完后觉得很有意思,二次方程一消项,就变成了一次方程,从而得到对应的直线方程,很快能找出定点。
然后笔者就找了几道作业题想试一下,结果发现
根本消不掉!
于是就深入研究了一下这种方法。
先来描述一下这类问题:过圆锥曲线
齐次化联立就是让两条直线合起来写为一个二次方程,让这个二次方程与圆锥曲线方程联立,所得到的方程再通过消项变为一次方程。只要这个消项过程中没有消去 点
在Dylan的文章中,最开始取的这个点
但既然都是过定点直线,按理来说就应该有相应的方法来消项变为一次。我们先看一下消项的原理。
齐次化联立的第一步是把两条直线相乘得到双直线方程
明白这一点后就可以有目的地处理方程,从而转化为直线方程。
可以随手编一个例题来看一下
首先得出直线
相乘得到
但这里我们发现,不管是前面的
此时我们就需要通过
对
从而有
将其代入
两边同乘以
下面是比较神奇的一步,消去
将此方程与双直线方程
注意到此时
从这里可以看出,
定点坐标解得
这里需要补充一个引理
我们需要将椭圆和双曲线的第三定义对应的那个性质略作推广一下
椭圆
我们可以把左右顶点换为椭圆/双曲线上关于其中心对称的两点,且定值仍然不变。
只需注意到,方程
我们把上面最后与
在得到这个方程时,我们消去了


借助
这就是最终得到直线方程的原理。虽然
下面我们来写下一般情形,即点
先以椭圆为例。
椭圆
相乘得
将
代入整理得
两方程相加,得
最后消去二次项,化简得
至此我们成功写出了直线
对于双曲线推导是类似的,大家可以自己尝试一下,对于双曲线
抛物线是无心二次曲线,没法找中心对称点,但对抛物线其实也有相同的结论。
对抛物线
将抛物线方程写为
此时,没有
即所求直线的方程。
最后来说下Dylan提到的难题。
椭圆,过
作两条直线
、
交椭圆于
四点,两直线斜率满足:
,
和
分别是
和
的中点,求证:直线
过定点。
本题好像和上面的题并不相同,因为定点
结合上面对第三定义的推广,这告诉我们,B和C在某个椭圆上。这个椭圆的中心为
知道轨迹为椭圆只是保证我们能用此方法来求直线方程,如果考场上具体运算时无需说明。我们可以写出这个方程,为
直线
由上面的椭圆方程得到
代入整理得
椭圆方程中无
由椭圆方程有
再由
故直线
2.18补充一下
前几天在群里发现一些题目的直线不一定过定点,是斜率一定。
不过这种方法还是适用的,以椭圆为例,来看下出现定斜率直线的情形
最终得到的方程为
要定斜率的话,最终的
对上式整理出
若已知
(此时分母为0的情况不符合条件,故不考虑)
注意到
若
或
因此,当
对双曲线,推导是类似的,当
对抛物线则只有
以上推导过程可以无需记住,知道这些结论的作用是在一些题目中快速转化条件,譬如以下的 题。
椭圆
解:设
由
椭圆
两方程联立得
即
设
故
本题常规计算的计算量也不算大,但若没找到
相比之下,若是直线过定点但题目中没有提示,常规计算及很不容易发现。下面是16年山东某校的题目(具体哪个学校忘了).一样的,简单修改删去第一问。
双曲线
解:设
则两直线组成的双直线方程为
与双直线方程联立得
故直线
则
所以点
笔者第一次做到这题时设直线方程爆算,而且完全不知道直线过定点...然后到现在也懒得用常规方法算一遍(