关于雅可比行列式与积分换元

本文介绍了积分换元中雅可比行列式的重要性,确保微元面积的一致性以保持积分结果不变。通过线性方程组和全微分展示了雅可比行列式的计算,强调了其在变换前后微元面积比例中的角色,并讨论了反函数的雅可比行列式。此外,还探讨了在概率密度函数变换时,雅可比行列式如何保证密度函数的积分保持一致。
摘要由CSDN通过智能技术生成

换元前后微元数目相同,然后我们保证每个微元的积分(就是dxdy * f(x,y) 的简单乘积)相同那么最后的结果必定是一样的。

对于二元情况的证明参考同济高数7版 P151

A

考虑线性方程组

u=ax+by

v=cx+dy

------------------------------

如果在xy平面上取 (0,0),(1,0),(0,1),(1,1)4个点构成一个变长为1的正方形,那么经过

[a   b

c    d] 做变换后会是一个平行四边形。在uv平面上是 <a,b>,<c,d> 两个向量

向量的面积  | <a,b>  x  <c,d> |  = ad-cd  这就表示变换后的面积比原面积是ad-cb/1

 

等于方程组的对应得行列式

 B

x=g(u,v) y=h(u,v) ,  x,y 与 u v不是线性的

但是做全微分后,   dx= Gu du + Gv dv ,  dy=Hu du  +Hv dv

可见微元 dxdy 与 dudv 在指定点(u0,v0)  是成线性关系的。 dxdy 、dudv 面积之比

| Gu   Gv

  Hu    Hv|  即雅可比行列式(行列式不能是0)  即 dxdy/dudv=J   所以做积分变换时 dxdy=  J * dudv

 

考虑  f(x,y) dxdy 积分变换后要保证值一致(微

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值