换元前后微元数目相同,然后我们保证每个微元的积分(就是dxdy * f(x,y) 的简单乘积)相同那么最后的结果必定是一样的。
对于二元情况的证明参考同济高数7版 P151
A
考虑线性方程组
u=ax+by
v=cx+dy
------------------------------
如果在xy平面上取 (0,0),(1,0),(0,1),(1,1)4个点构成一个变长为1的正方形,那么经过
[a b
c d] 做变换后会是一个平行四边形。在uv平面上是 <a,b>,<c,d> 两个向量
向量的面积 | <a,b> x <c,d> | = ad-cd 这就表示变换后的面积比原面积是ad-cb/1
等于方程组的对应得行列式
B
x=g(u,v) y=h(u,v) , x,y 与 u v不是线性的
但是做全微分后, dx= Gu du + Gv dv , dy=Hu du +Hv dv
可见微元 dxdy 与 dudv 在指定点(u0,v0) 是成线性关系的。 dxdy 、dudv 面积之比
| Gu Gv
Hu Hv| 即雅可比行列式(行列式不能是0) 即 dxdy/dudv=J 所以做积分变换时 dxdy= J * dudv
考虑 f(x,y) dxdy 积分变换后要保证值一致(微