三角形重心坐标公式推导

定理:已知三角形A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。则它的重心坐标为:

  xg = (x1+x2+x3) / 3 ;

       yg = (y1+y2+y3) / 3 ;

设三点为A(x1.y1)B(x2,y2)C(x3,y3)
重心G点坐标(x,y)
考虑xm
任取两点(不妨设为A和B),则重心G在以AB为底的中线(CN)上.
N点横坐标为(x1+x2)/2
重心G在CN距N点1/3处,即NG=1/3*CN

故重心横坐标为
xm=1/3*(x3-(x1+x2)/2)+(x1+x2)/2
=(x1+x2+x3)/3
同理,ym=(y1+y2+y3)/3

转载于:https://www.cnblogs.com/7qin/p/10012868.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值