自相关分析

自相关是衡量同一事件在不同时间点的相关程度,常用于分析信号处理中的周期性和重复模式。自相关函数为偶函数,当时间差为零时达到最大值,表示信号的均方值。在R语言中,可以使用cor()函数计算相关系数,包括Pearson、Spearman和Kendall。偏相关分析则在消除第三个变量影响后,研究两个变量间的相关性。
摘要由CSDN通过智能技术生成

相关: 偏相关,自相关,互信息,等级相关

相关系数度量指的是两个不同事件彼此之间的相互影响程度;而自相关系数度量的是同一事件在两个不同时期之间的相关程度,形象的讲就是度量自己过去的行为对自己现在的影响。

自相关,也称 序列相关。是一个信号于其自身在不同时间点的互相关。非正式地来说,它就是两次观察之间的相似度对它们之间的时间差的函数。它是找出重复模式(如被噪声掩盖的周期信号),或识别隐含在信号谐波频率中消失的基频的数学工具。它常用于信号处理中,用来分析函数或一系列值,如时域信号。

皮尔森相关:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值