齐次变换

除了使用三维直角座标来表示物体的空间位置之外,在图学中,也常使用「齐次座标」(homogeneous coordinate)来呈现,这一方面是为了方便将空间的平移、缩放、旋转等转换使用矩阵来记录。

齐次座标使用四个元素来表示,即(x, y, z, w),要将齐次座标转换为三维座标,其关系为(x/w, y/w, z/w),其中w表示座标轴的远近参数,通常设为1,如果要用来表示远近感,则会设定为距离的倒数(1/距离),例如表示一个无限远的距离时,我们会将w 设定为0。

可以直接将之前介绍过的公式使用齐次座标与矩阵来展现,就可以了解齐次座标的好处,例如以三维座标常见的平移、缩放与旋转为例,表示方法如下(原座标x,y ,z,转换后x1,y1,z1):

平移:假设三个平移量分别为Tx、Ty与Tz。 。 。 。

 

縮放:假設x、y、z的縮放比例分別為a、b、c。。 。。 



旋轉:關於旋轉的公式導證,之前介紹過了。。。。 

转载于:https://www.cnblogs.com/wang985850293/p/5191783.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值