项目背景
客户是一家文学研究机构,他们希望通过对简·奥斯汀作品中人物对话的情感分析,深入了解作品中人物的情感变化和故事情节的发展。因此,他们委托你进行一项情感分析项目,利用“janeaustenr”包中的数据集来构建情感分析模型。
数据来源
客户将提供“janeaustenr”包,该包包含了简·奥斯汀的几部小说(如《傲慢与偏见》、《理智与情感》等)的文本数据。你可以直接使用该包中的数据进行分析。
需求分析
-
- 目标:构建一个情感分析模型,对简·奥斯汀作品中人物对话进行情感分类(正面、负面或中性)。
-
- 数据集:使用“janeaustenr”包中的小说文本数据。
-
- 情感分类:将对话分为正面、负面和中性三类。
-
- 模型要求:
• 需要考虑文本数据的预处理,如分词、去除停用词、词干提取等。
• 需要选择合适的特征提取方法,如词袋模型、TF-IDF等。
• 需要选择合适的分类算法,如朴素贝叶斯、支持向量机、随机森林等,并进行参数调优。
• 需要对模型进行评估,包括准确率、召回率、F1分数等指标。
交付成果
- 模型要求:
-
- R代码:提供完整的R代码,包括数据预处理、特征提取、模型建立和模型评估等步骤。
-
- 模型报告:提供一份详细的模型报告,包括数据预处理的结果、特征提取的方法、模型的性能评估结果等。
-
- 情感分析结果:对简·奥斯汀作品中人物对话进行情感分类,并生成情感分析结果报告,包括对话的情感极性、情感强度等信息。
技术要求
-
- 熟悉R语言:能够熟练使用R语言进行文本数据分析和情感分析。
-
- 了解情感分析:熟悉情感分析的基本原理和步骤,能够独立完成模型的建立和评估。
-
- 文本处理能力:能够处理大规模文本数据,进行数据预处理和特征提取。
-
- 模型评估能力:能够使用合适的评估指标对模型进行评估,并解释评估结果。
按步骤构建整个流程,包括数据加载、预处理、特征提取、模型建立、评估等。以下是基于R语言的实现方案。
1. 加载必要的包
首先,确保安装并加载所需的R包,包括 janeaustenr
, tidyverse
, tm
, textclean
, text
, caret
, e1071
等:
# 安装必要的包
install.packages(c("janeaustenr", "tidyverse", "tm", "textclean", "text", "caret", "e1071"))
# 加载包
library(janeaustenr)
library(tidyverse)
library(tm)
library(textclean)
library(text)
library(caret)
library(e1071)
2. 数据加载与准备
janeaustenr
包中包含了简·奥斯汀的作品数据。我们需要从该包中提取出人物对话的文本,并整理为适合情感分析的格式。
# 加载简·奥斯汀的文本数据
data("austen_books")
# 查看数据结构
head(austen_books