问题(1)解答:
当离心率 e = 2 e = 2 e=2 时,双曲线的焦距 c = e ⋅ a = 2 ⋅ 1 = 2 c = e \cdot a = 2 \cdot 1 = 2 c=e⋅a=2⋅1=2。根据双曲线关系 c 2 = a 2 + b 2 c^2 = a^2 + b^2 c2=a2+b2,代入 c = 2 c = 2 c=2 和 a = 1 a = 1 a=1,解得 b = 3 b = \sqrt{3} b=3。
脚本(1):
% 问题(1)求解
syms b
a = 1; % 双曲线x² - y²/b