叉积的证明_向量积分配律的证明

向量积分配律的证明

向量积分配律的证明

三维向量外积

(

即矢积、

叉积

)

可以用几何方法证明

;

也可以借用外积的反对称性、

内积的分配律和

混合积性质,以代数方法证明。

下面把向量外积定义为:

a

×

b

=

|a|

·

|b|

·

Sin.

分配律的几何证明方法很繁琐,

大意是用作图的方法验证。

有兴趣的话请自己参阅参考文献中的

证明。

下面给出代数方法。我们假定已经知道了:

1)

外积的反对称性:

a

×

b

=

-

b

×

a.

这由外积的定义是显然的。

2)

内积

(

即数积、点积

)

的分配律:

a

·

(b

+

c)

=

a

·

b

+

a

·

c,

(a

+

b)

·

c

=

a

·

c

+

b

·

c.

这由内积的定义

a

·

b

=

|a|

·

|b|

·

Cos

,用投影的方法不难得到证明。

3)

混合积的性质:

定义

(a

×

b)

·

c

为矢量

a,

b,

c

的混合积,容易证明:

i)

(a

×

b)

·

c

的绝对值正是以

a,

b,

c

为三条邻棱的平行六面体的体积,其正负号由

a,

b,

c

的定

向决定

(

右手系为正,左手系为负

)

从而就推出:

ii)

(a

×

b)

·

c

=

a

·

(b

×

c)

所以我们可以记

a,

b,

c

的混合积为

(a,

b,

c).

i)

还可以推出:

iii)

(a,

b,

c)

=

(b,

c,

a)

=

(c,

a,

b)

我们还有下面的一条显然的结论:

iv)

若一个矢量

a

同时垂直于三个不共面矢

a1,

a2,

a3

,则

a

必为零矢量。

下面我们就用上面的

1)2)3)

来证明外积的分配律。

r

为空间任意矢量,在

r

·

(a

×

(b

+

c))

里,交替两次利用

3)

ii)

iii)

和数积分配律

2)

,就有

r

·

(a

×

(b

+

c))

=

(r

×

a)

·

(b

+

c)

=

(r

×

a)

·

b

+

(r

×

a)

·

c

=

r

·

(a

×

b)

+

r

·

(a

×

c)

=

r

·

(a

×

b

+

a

×

c)

移项,再利用数积分配律,得

r

·

(a

×

(b

+

c)

-

(a

×

b

+

a

×

c))

=

0

这说明矢量

a

×

(b

+

c)

-

(a

×

b

+

a

×

c)

垂直于任意一个矢量。按

3)

iv)

,这个矢量必为零矢

量,即

a

×

(b

+

c)

-

(a

×

b

+

a

×

c)

=

0

所以有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值