
前言
之前介绍过几种矩阵分解方法,都可以有效的提升矩阵方程的数值求解问题,其中LU分解尤其适合于中小型、稠密矩阵的求解问题。我们最理想的矩阵就是可相似对角化的矩阵,直接可以分解成两个酉矩阵和一个对角矩阵的形式,那么如果一个矩阵不符合可相似对角化的条件应该怎么解决呢?这里提出Jordan分解,提供了对不可相似对角化矩阵分解的解决方案。
一、Schur标准型
- 定义
给定一个矩阵A,可以通过相似正交变换成一个上三角矩阵(任意n阶方阵),其实可以将LU分解中的L进行施密特正交化。
上面将X分解为UR,其中U是酉矩阵,R是上三角矩阵。那么我们可以得出Schur分解的定义。

任意n阶方阵,酉相似于一个以其特征值为对角元的上三角矩阵R。
2. 特殊矩阵的特征系统
由Schur定理可以自然想到,什么样的矩阵会酉相似于对角矩阵呢?答案是正规矩阵。
正规矩阵
设
H这里表示共轭,类比于实数矩阵的转置的概念,因为矩阵中会包含虚数,所以使用H表示共轭。
Hermite矩阵:
斜Hermite矩阵:
酉阵:
对于上面这四种特殊的矩阵,对应的R各有不同,这里直接可以记忆结论:
- A为正规矩阵,R是对角矩阵。
- A为Hermi