立体栅格地图_基于滑动窗口的室内三维立体栅格地图特征点提取方法与流程

本发明提供了一种基于滑动窗口的室内三维立体栅格地图特征点提取方法,适用于graph-slam的前端构建和多机器人slam地图融合。通过滑动窗口计算占空比,结合平面分割、拟合和距离判断,提取并聚类特征点,有效解决了错误特征点的问题。
摘要由CSDN通过智能技术生成

本发明属于移动机器人建图技术领域,特别是单机器人的graph-slam以及多机器人slam技术,具体涉及一种基于滑动窗口的室内三维立体栅格地图特征点提取方法。

背景技术:

当移动机器人在室内环境下工作时,不能通过外部设备(如gps)获得位姿信息时,此时,机器人可以通过自身携带的传感器去感知周围的环境并创建地图,然后再根据创建的地图对机器人进行定位,这就是移动机器人的同时定位与建图(simultaneouslocalizationandmapping,slam)技术,在此基础上,移动机器人才能够完成其他的工作,如探索、路径规划、导航等。因此,slam是移动机器人在未知环境下执行复杂任务的基础,是移动机器人智能化的关键。

移动机器人slam算法主要分为基于滤波的方法和基于图优化的方法。基于滤波的方法只能预测和更新当前机器人的状态,如果某一时刻机器人的状态出现误差,那么这个误差将会伴随着移动机器人建图的整个过程,因此基于滤波的方法不适用于大规模环境建图。与传统的基于滤波的方法不同,graph-slam是在采集完整地图的信息之后,用优化算法来实现slam。graph-slam算法可以分为前端和后端两部分,前端负责图的构建,主要包括顺序数据关联和环路闭环检测两个过程。前端构造的图叫做位姿图(pose-graph),graph-slam的后端负责使用优化器对位姿图进行全局优化,将优化完成的位姿图继续进行闭环检测,直到位姿图不再更新。

地图可以分为二维地图和三维地图,三维地图信息更加丰富,能真实的将环境信息体现出来。目前,三维地图主要有点云地图和三维立体栅格地图。由于点云地图只能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值