二阶系统响应指标图_自动控制系统时域分析八:二阶闭环系统瞬态响应之常用校正环节...

本文介绍了二阶闭环系统在输出量速度反馈控制和误差比例微分控制下的响应特性。通过分析,展示了这两种控制方式如何影响无阻尼振荡角频率ωn和等效阻尼系数ζ,并探讨了带有零点的二阶系统对响应的影响,包括单位阶跃响应曲线及其特征。
摘要由CSDN通过智能技术生成
为了改善系统性能而改变系统的结构、参数或附加具有一定功能的环节的方法称为对系统进行校正。附加环节称为校正环节。速度反馈和速度顺馈是较常用的校正方法。

一:输出量的速度反馈控制

36035128f859d76175633406796757b2.png

此时闭环传递函数为:

539a31a257c938e8ad5b44333de77d8c.png

与典型二阶系统的标准形式比较:

0510a977eeca0acae8685418feed186f.png

1)不改变无阻尼振荡角频率ωn

2)等效阻尼系数为:

5f9dc00c10bae105ff33adc6bfeb5409.png

由于 ζt> ζ,即等效阻尼系数通过引入速度负反馈加大,使得超调量和调节时间都变小了。

二:误差的比例微分控制

73afa2050bf510de8e85755ced3cd546.png

此时闭环传递函数为:

3e9c9b86d7627574175f80023e94af2a.png

与典型二阶系统的标准形式比较:

0510a977eeca0acae8685418feed186f.png

1)不改变无阻尼振荡角频率ωn

2)等效阻尼系数为:

a136ea6fb1733d97cfb1e319d9531fe9.png

由于 ζd> ζ,即等效阻尼系数通过引入速度负反馈加大,使得超调量和调节时间都变小了。

3)闭环传递函数引入了一个零点-1/τ,将会给系统带来影响。

三:具有零点的二阶系统分析

具有零点的二阶系统比典型的二阶系统多一个零点,( ωn和 ζ不变)。其闭环传递函数为:

e634c813d5cfc6528863225ef4fe8f00.png

零点为:-1/τ=-z,零极点分布图:

32e0ac3ec60b0cc478f0fa63f7dc3b4a.png

具有零点的二阶系统(0<ζ<1)的单位阶跃响应为:

43ce850f62cbfb686174afee972e755f.png

089e039c0b624a0a25d5178ffa381a4e.png

169dff638260e1c619add3f8adb406f0.png

响应曲线如下:

e54a2851c59b931a8c88b3da0b4c45d0.png

由上图可看出:C2(t)使得C(t)比C1(t)响应迅速且有较大超调量。

设零点与极点实部之比为α,则:

698e58c1d0cee51c3ae3805ee97a9ab1.png

25021fd044cff2d70d7bf8a01b0a85b1.png

下一节将介绍自动控制系统时域分析九:具有零点的二阶闭环系统瞬态响应性能指标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值