线性代数-MIT-第3讲

第3讲-乘法和逆矩阵

更多文章请关注微信公众号:SLAM之路

目录

第3讲-乘法和逆矩阵

1.矩阵乘法(4种方法)

2.矩阵的逆(方阵)

3.高斯乔丹法则

4.乘积的逆


 


1.矩阵乘法(4种方法)

矩阵A*矩阵B=矩阵C

\begin{bmatrix} - &- & - &- \\ -& - & - & -\\ -&- &- &- \\ -& -& -& - \end{bmatrix}\begin{bmatrix} - &- & - &- \\ -& - & - & -\\ -&- &- &- \\ -& -& -& - \end{bmatrix}=\begin{bmatrix} - &- & - &- \\ -& - & - & -\\ -&- &- &- \\ -& -& -& - \end{bmatrix}

            A                           B                                C

什么情况下矩阵才能进行相乘?

       并非方阵,如果方阵相乘必须大小相同;否则A的列数等于B的行数;

       A_{mn}B_{nk}=C_{mk}

法1:

求矩阵C中第三行第四列的元素:

c34=(A的行3向量)点乘(B的列4向量);c_{34}=a_{31}b_{14}+a_{32}b_{24}+...=\sum_{k=1}^{n}a_{3k}b_{k4}

法2:

右乘理解,即右乘各列是左边矩阵列向量的线性组合系数,注意颜色对应性;

\begin{bmatrix} - &- & - &- \\ -& - & - & -\\ -&- &- &- \\ -& -& -& - \end{bmatrix}\begin{bmatrix} {\color{Red} -} &{\color{Blue} -} & {\color{Cyan} -} &{\color{Magenta} -}&- \\ {\color{Red} -} &{\color{Blue} -} & {\color{Cyan} -} &{\color{Magenta} -}&- \\{\color{Red} -} &{\color{Blue} -} & {\color{Cyan} -} &{\color{Magenta} -}&- \\ {\color{Red} -} &{\color{Blue} -} & {\color{Cyan} -} &{\color{Magenta} -}&- \end{bmatrix}=\begin{bmatrix} {\color{Red} -} &{\color{Blue} -} & {\color{Cyan} -} &{\color{Magenta} -}&- \\ {\color{Red} -} &{\color{Blue} -} & {\color{Cyan} -} &{\color{Magenta} -}&- \\{\color{Red} -} &{\color{Blue} -} & {\color{Cyan} -} &{\color{Magenta} -}&- \\ {\color{Red} -} &{\color{Blue} -} & {\color{Cyan} -} &{\color{Magenta} -}&- \end{bmatrix}

          A                                B                                        C

一次只看一列结果:C中每一列是A中各列的线性组合;

法3:

左乘理解,即左乘各行是右边矩阵各行向量的线性组合系数,注意符号对应性

\begin{bmatrix} - &- &- &- \\ / & / &/ &/ \\ * & * & *& * \end{bmatrix}\begin{bmatrix} - &- & - & - & -\\ - & -& -& -& -\\ -& - & - & - & -\\ -& - & - & -& - \end{bmatrix}=\begin{bmatrix} - &- &- &- &- \\ /& /& /& / &/ \\ * & * &* &* &* \end{bmatrix}

          A                                B                                        C

一次只看一行结果:C中每一行是B中各行的线性组合;

法4:AB=sum of (cols of A)(rows of B)

\begin{bmatrix} 2 &7 \\ 3& 8\\ 4&9 \end{bmatrix}\begin{bmatrix} 1 &6 \\ 0& 0 \end{bmatrix}=\begin{bmatrix} 2\\3 \\ 4 \end{bmatrix}\begin{bmatrix} 1 &6 \end{bmatrix}+\begin{bmatrix} 7\\9 \\ 9 \end{bmatrix}\begin{bmatrix} 0 &0 \end{bmatrix}

法5:分块乘法

\begin{bmatrix} A_1 &A_2 \\ A_3 & A_4 \end{bmatrix}\begin{bmatrix} B_1&B_2 \\ B_3& B_4 \end{bmatrix}=\begin{bmatrix} A_1B_1+A_2B_3 &A_1B_2+A_2B_4 \\ A_3B_1+A_4B_3&A_3B_2+A_4B_4 \end{bmatrix}

2.矩阵的逆(方阵)

方阵A,若存在逆矩阵,可逆矩阵或非奇异矩阵,则,

AA^{-1}=A^{-1}A=I

不可逆矩阵或奇异矩阵,下面2x2矩阵不可逆,

A=\begin{bmatrix} 1&3\\ 2 & 6\end{bmatrix}

解释1:因A列向量线性相关,两列共线无法转化成单位阵;

解释2:如果存在向量x,使Ax=0,例如x=[3,-1],存在非零向量满足方程则不可逆,

            或假设A可逆,则左乘逆,则x=[0,0,0]但x不等于0;

求逆:

\begin{bmatrix} 1&3\\ 2 & 7\end{bmatrix}\begin{bmatrix} a &c \\ b & d \end{bmatrix}=\begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix}

A            A的逆           I             

转化为,AxA的逆各列=I的各列

3.高斯乔丹法则

   能同时处理两个方程组

\begin{bmatrix} 1&3\\ 2 & 7\end{bmatrix}\begin{bmatrix} a &c \\ b & d \end{bmatrix}=\begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix}\Rightarrow \begin{bmatrix} 1&3\\ 2 & 7\end{bmatrix}\begin{bmatrix} a \\ b \end{bmatrix}=\begin{bmatrix} 1 \\ 0 \end{bmatrix},\begin{bmatrix} 1&3\\ 2 & 7\end{bmatrix}\begin{bmatrix} c \\ d \end{bmatrix}=\begin{bmatrix} 0 \\ 1 \end{bmatrix}

转化成增广矩阵,左侧转变成单位矩阵,右侧即为逆,

\begin{bmatrix} 1&3\\ 2 & 7\\1&3\\ 2 & 7\end{bmatrix}\begin{bmatrix} a \\ b\\c\\d \end{bmatrix}=\begin{bmatrix} 1 \\ 0\\0\\1 \end{bmatrix}\Rightarrow \begin{bmatrix} 1&3 &1 &0\\ 2 & 7& 0 & 1\end{bmatrix}\Rightarrow \begin{bmatrix} 1&3 &1 &0\\ 0 & 1& -2& 1\end{bmatrix}\Rightarrow \begin{bmatrix} 1&0 &7 &-3\\ 0 & 1& -2& 1\end{bmatrix}

                                           A            I                                              I            A的逆

4.乘积的逆

(AB)^{-1}=B^{-1}A^{-1}

AA^{-1}=I\overset{Transpose}{\rightarrow}(A^{-1})^{T}A^{T}=I\Rightarrow (A^{T})^{-1}=(A^{-1})^{T}

 

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值