四元数学习[Quaterniond kinematics for the error-state Kalman filter]-2

更多文章请关注微信公众号:SLAM之路

目录

1.What-旋转群(SO(3))

2.How-旋转群(SO(3))和旋转矩阵(R)

2.1旋转矩阵指数映射:

2.2旋转矩阵与旋转向量关系

2.3旋转矩阵对数映射

3.How-旋转群(SO(3))和四元数(Q)

3.1四元数指数映射

3.2四元数与旋转向量

3.3四元数对数映射

3.4旋转矩阵与四元数

3.5四元数和旋转矩阵球形插值


1.What-旋转群(SO(3))

旋转是线性变换,保留了向量的长度和相对方向等特征,在3D刚体旋转领域极其重要;

因刚体运动要求旋转过程中精确保留距离[norms]/角度[angles]/相对方向[relative orientations],否则无法视为刚体;

定义旋转操作符 rR^{3}\rightarrow R^{3}; \boldsymbol{v}\rightarrow r(\boldsymbol{v}),其中\boldsymbol{v}\in R^{3},v是欧几里得空间的矩阵,通过点乘/叉乘等满足特性

  •   旋转保留向量范数 [长度]

                \begin{Vmatrix} \boldsymbol{r(\boldsymbol{v})} \end{Vmatrix}=\sqrt{<r(\boldsymbol{v}),r(\boldsymbol{v})>}=\sqrt{<\boldsymbol{v},\boldsymbol{v}>}=\begin{Vmatrix} \boldsymbol{v} \end{Vmatrix}

  •    旋转保留向量角度[角度]

                <r(\boldsymbol{v}),r(\boldsymbol{w})>=<\boldsymbol{v},\boldsymbol{w}>=\begin{Vmatrix} \boldsymbol{\boldsymbol{v}} \end{Vmatrix}\begin{Vmatrix} \boldsymbol{w} \end{Vmatrix}cos\alpha

  •    旋转保留相对方向[方向]

                \boldsymbol{u}\times \boldsymbol{v}=\boldsymbol{w}\Leftrightarrow r(\boldsymbol{u})\times r(\boldsymbol{v})=r(\boldsymbol{w})=r(\boldsymbol{u}\times \boldsymbol{v})

旋转可以通过旋转矩阵或四元数组成,两者在概念或几何上均存在相似性,最大的区别在于单位四元数组

成SO(3)时存在两面性(double cover);

2.How-旋转群(SO(3))和旋转矩阵(R)

上文定义操作符r()是线性的,采用旋转矩阵时,通过矩阵乘法实现旋转:

               r(\boldsymbol{v})=\boldsymbol{Rv}

根据旋转保留向量范数,及点乘<a,b>=a^{T}b可得:

              \boldsymbol{(Rv)^{T}Rv}=\boldsymbol{v^{T}R^{T}Rv}=\boldsymbol{v^{T}v} 

因此R应满足正交矩阵性质,称为正交群O(3),即\boldsymbol{R^{T}R}=I=\boldsymbol{RR^{T}};从而可得\boldsymbol{R^{-1}}=\boldsymbol{R^{T}}逆旋转

(正交矩阵性质)通过旋转矩阵R的转置实现;

根据旋转保留向量方向,及叉乘可得det(R)=1;因此具有行列式值为1的正交矩阵成为特殊的,习惯

称为特殊正交群SO(3);

2.1旋转矩阵指数映射

一种数学运算技巧,使导数/扰动/等定义合理化;旋转构成刚体运动,因此使用SO(3)特殊正交群

定义连续的轨迹或路径r(t)成为可能,刚体旋转具有连续性,对旋转变换进行时间积分进行研究;

              

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
四元数运动学是错误状态卡尔曼滤波器中的一种重要方法。在四元数运动学中,我们使用四元数表示刚体的旋转姿态。错误状态卡尔曼滤波器是一种滤波算法,用于估计系统的状态,特别是旋转姿态的状态,并根据输入信号对估计的状态进行修正。 在错误状态卡尔曼滤波器中,我们通过使用四元数来表示旋转姿态的状态,并定义一个误差状态来描述实际姿态与估计姿态之间的差异。然后,我们使用卡尔曼滤波器的观测方程和状态方程,更新估计的状态,以减小误差状态。 四元数运动学提供了一种方便的方法来表示旋转姿态,它具有良好的数学特性和计算效率。通过使用四元数运动学,我们可以使用简洁的数学公式来描述旋转操作,避免了矩阵和欧拉角等其他旋转表示方法的复杂性。 在错误状态卡尔曼滤波器中,我们使用四元数运动学来更新估计的旋转姿态状态。通过将观测值与估计值之间的差异与卡尔曼增益相乘,我们可以得到一个修正项,用于更新估计的姿态状态。这种方式可以有效地融合观测数据和先验信息,提高对旋转姿态的估计精度。 总之,四元数运动学是错误状态卡尔曼滤波器中用于估计旋转姿态的一种重要方法。通过使用四元数来表示姿态状态,并结合卡尔曼滤波算法进行状态估计,我们可以实现更精确的姿态估计,并应用于各种导航和控制系统中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值