PointNet: Deep Learning on Point Sets for 3D Classification and Segmentationarxiv.org charlesq34/pointnetgithub.com
本文为学习PointNet论文、源码的一些笔记。
1 PointNet的功能
实现点云的分类、分割
2 PointNet的数据
- 运行代码时,数据通过provider脚本自动下载、解压,保存到data目录下。
- 其中有个train_files.txt,里面有一个文件列表,每个文件是一个h5py文件。每个h5py文件相当于一个字典,用h5py打开后,通过keys()获取到key,取出对应的value。对于分类的例子,只关心两个key里面的数据:data、label
- data取出来后,对应一个np.ndarray,shape是:(2048, 2048, 3),表示有2048个点云,每个点云有2048个点,每个点由xyz三个坐标组成。里面每个点云中的点,应该是无顺的。
- label取出来后,对应一个np.ndarray,shape是:(2048, 1),表示每个点云的分类结果,分别用一个整数来表示。总共有40个类。
可以通过以下方法来可视化点云数据