中兴员工薪酬一览表

中兴

之前看了 华为OD小米 的薪资一览表,不少同学表示想看「中兴」相关的薪资爆料。

说到中兴,估计它已经被不少网友淡忘了,但其实中兴在通讯领域的地位仍然是举足轻重。

中兴在全球拥有 8.5W 件专利,光这些专利技术的价值就超过 450 亿人民币。

说起通讯领域,大家又容易想起另一家巨头:华为。

网传他们两家存在某种"不成文"的协议,就是相互不招对方的人,当然现在可能已经转为"成文"的竞业协议了。

扯得有点远,还是来看看「中兴」的职级和薪资吧。

中兴整体有三条职业发展跑道(2P+M),分别是 P(专业)序列、M(管理序列)以及 P(项目序列)。

alt

中兴采取 7*3 的职级积分晋升机制,每年两次晋升评级,员工可以通过「绩效贡献、项目贡献、关键事件贡献」三种形式进行积分,达到一定积分即可申请晋级加薪。

更具体的职级,是从1级到7级,7>6>5>4>3>2>1,然后每个级别分ABC,A>B>C。

对应的月薪标准为:

  • 1级:6k ~ 9k
  • 2级:9k ~ 15k
  • 3级:12k ~ 18k
  • 4级:15k ~ 20k
  • 5级:20k ~ 80k
  • 6级:80k ~ 200k
  • 7级:200k ~ 500k

至于年终奖待遇,和所在部门关系很大,中位数一般在 2~4 个月。

除了基本薪资和常规的五险一金以外,中兴还会统一为员工提供免费的商业意外保险(出差海外的员工还有免费海外商旅险)、低价食堂、免费班车、通讯费补贴以及低价人才公寓(深圳、南京、三亚)。

对于「中兴」以及薪资,你有什么想说的,欢迎评论区交流。

...

回归主题。

来一道和秋招相关的算法题。

题目描述

平台:LeetCode

题号:74

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

  • 每行中的整数从左到右按升序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

示例 1:

alt
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3

输出:true

示例 2:

alt
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13

输出:false

提示:

二分(一)

由于二维矩阵固定列的「从上到下」或者固定行的「从左到右」都是升序的。

因此我们可以使用两次二分来定位到目标位置:

  1. 第一次二分:从第 0 列中的「所有行」开始找,找到合适的行 row
  2. 第二次二分:从 row 中「所有列」开始找,找到合适的列 col

Java 代码:

class Solution {
    public boolean searchMatrix(int[][] mat, int t) {
        int m = mat.length, n = mat[0].length;
        // 第一次二分:定位到所在行(从上往下,找到最后一个满足 mat[x]][0] <= t 的行号)
        int l = 0, r = m - 1;
        while (l < r) {
            int mid = l + r + 1 >> 1;
            if (mat[mid][0] <= t) l = mid;
            else r = mid - 1;
        }
        int row = r;
        if (mat[row][0] == t) return true;
        if (mat[row][0] > t) return false;
        // 第二次二分:从所在行中定位到列(从左到右,找到最后一个满足 mat[row][x] <= t 的列号)
        l = 0; r = n - 1;
        while (l < r) {
            int mid = l + r + 1 >> 1;
            if (mat[row][mid] <= t) l = mid;    
            else r = mid - 1;
        }
        int col = r;
        return mat[row][r] == t;
    }
}

C++ 代码:

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& mat, int t) {
        int m = mat.size(), n = mat[0].size();
        // 第一次二分:定位到所在行
        int l = 0, r = m - 1;
        while (l < r) {
            int mid = l + r + 1 >> 1;
            if (mat[mid][0] <= t) l = mid;
            else r = mid - 1;
        }
        int row = r;
        if (mat[row][0] == t) return true;
        if (mat[row][0] > t) return false;
        // 第二次二分:从所在行中定位到列
        l = 0; r = n - 1;
        while (l < r) {
            int mid = l + r + 1 >> 1;
            if (mat[row][mid] <= t) l = mid;
            else r = mid - 1;
        }
        int col = r;
        return mat[row][l] == t;
    }
};

Python 代码:

class Solution:
    def searchMatrix(self, mat, t):
        m, n = len(mat), len(mat[0])
        # 第一次二分:定位到所在行
        l, r = 0, m - 1
        while l < r:
            mid = l + r + 1 >> 1
            if mat[mid][0] <= t:
                l = mid
            else:
                r = mid - 1
        row = r
        if mat[row][0] == t:
            return True
        if mat[row][0] > t:
            return False
        # 第二次二分:从所在行中定位到列
        l, r = 0, n - 1
        while l < r:
            mid = l + r + 1 >> 1
            if mat[row][mid] <= t:
                l = mid
            else:
                r = mid - 1
        col = r
        return mat[row][l] == t

TypeScript 代码:

function searchMatrix(mat: number[][], t: number)boolean {
    const m = mat.length, n = mat[0].length;
    // 第一次二分:定位到所在行
    let l = 0, r = m - 1;
    while (l < r) {
        const mid = l + r + 1 >> 1;
        if (mat[mid][0] <= t) l = mid;    
        else r = mid - 1;
    }
    const row = r;
    if (mat[row][0] == t) return true;
    if (mat[row][0] > t) return false;
    // 第二次二分:从所在行中定位到列
    l = 0; r = n - 1;
    while (l < r) {
        const mid = l + r + 1 >> 1;
        if (mat[row][mid] <= t) l = mid;    
        else r = mid - 1;
    }
    const col = r;
    return mat[row][l] == t;
};
  • 时间复杂度:
  • 空间复杂度:

二分(二)

当然,因为将二维矩阵的行尾和行首连接,也具有单调性。

我们可以将「二维矩阵」当做「一维矩阵」来做。

Java 代码:

class Solution {
    public boolean searchMatrix(int[][] mat, int t) {
        int m = mat.length, n = mat[0].length;
        int l = 0, r = m * n - 1;
        while (l < r) {
            int mid = l + r + 1 >> 1;
            if (mat[mid / n][mid % n] <= t) l = mid;    
            else r = mid - 1;
        }
        return mat[r / n][r % n] == t;
    }
}

C++ 代码:

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& mat, int t) {
        int m = mat.size(), n = mat[0].size();
        int l = 0, r = m * n - 1;
        while (l < r) {
            int mid = l + r + 1 >> 1;
            if (mat[mid / n][mid % n] <= t) l = mid;
            else r = mid - 1;
        }
        return mat[l / n][l % n] == t;
    }
};

Python 代码:

class Solution:
    def searchMatrix(self, mat, t):
        m, n = len(mat), len(mat[0])
        l, r = 0, m * n - 1
        while l < r:
            mid = l + r + 1 >> 1
            if mat[mid // n][mid % n] <= t:
                l = mid
            else:
                r = mid - 1
        return mat[l // n][l % n] == t

TypeScript 代码:

function searchMatrix(mat: number[][], t: number)boolean {
    const m = mat.length, n = mat[0].length;
    let l = 0, r = m * n - 1;
    while (l < r) {
        const mid = l + r + 1 >> 1;
        if (mat[Math.floor(mid / n)][mid % n] <= t) l = mid;    
        else r = mid - 1;
    }
    return mat[Math.floor(l / n)][l % n] === t;
};
  • 时间复杂度:
  • 空间复杂度:

抽象 BST

我们可以将二维矩阵抽象成「以右上角为根的 BST」:

alt

那么我们可以从根(右上角)开始搜索,如果当前的节点不等于目标值,可以按照树的搜索顺序进行:

  1. 当前节点「大于」目标值,搜索当前节点的「左子树」,也就是当前矩阵位置的「左方格子」,即 y--
  2. 当前节点「小于」目标值,搜索当前节点的「右子树」,也就是当前矩阵位置的「下方格子」,即 x++

Java 代码:

class Solution {
    int m, n;
    public boolean searchMatrix(int[][] mat, int t) {
        m = mat.length; n = mat[0].length;
        int x = 0, y = n - 1;
        while (check(x, y) && mat[x][y] != t) {
            if (mat[x][y] > t) y--;    
            else x++;
        }
        return check(x, y) && mat[x][y] == t;
    }
    boolean check(int x, int y) {
        return x >= 0 && x < m && y >= 0 && y < n;
    }
}

C++ 代码:

class Solution {
public:
    int m, n;
    bool searchMatrix(vector<vector<int>>& mat, int t) {
        m = mat.size(); n = mat[0].size();
        int x = 0, y = n - 1;
        while (check(x, y) && mat[x][y] != t) {
            if (mat[x][y] > t) y--;
            else x++;
        }
        return check(x, y) && mat[x][y] == t;
    }
    bool check(int x, int y) {
        return x >= 0 && x < m && y >= 0 && y < n;
    }
};

Python 代码:

class Solution:
    def searchMatrix(self, mat, t):
        m, n = len(mat), len(mat[0])
        x, y = 0, n - 1
        while self.check(m, n, x, y) and mat[x][y] != t:
            if mat[x][y] > t:
                y -= 1
            else:
                x += 1
        return self.check(m, n, x, y) and mat[x][y] == t
    def check(self, m, n, x, y):
        return 0 <= x < m and 0 <= y < n

TypeScript 代码:

function check(m: number, n: number, x: number, y: number)boolean {
    return x >= 0 && x < m && y >= 0 && y < n;
}
function searchMatrix(mat: number[][], t: number)boolean {
    const m = mat.length, n = mat[0].length;
    let x = 0, y = n - 1;
    while (check(m, n, x, y) && mat[x][y] !== t) {
        if (mat[x][y] > t) y--;
        else x++;
    }
    return check(m, n, x, y) && mat[x][y] === t;
};
  • 时间复杂度:
  • 空间复杂度:

最后

巨划算的 LeetCode 会员优惠通道目前仍可用 ~

使用福利优惠通道 leetcode.cn/premium/?promoChannel=acoier,年度会员 有效期额外增加两个月,季度会员 有效期额外增加两周,更有超大额专属 🧧 和实物 🎁 福利每月发放。

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值