python知识图谱关系抽取算法_知识图谱关系抽取之PCNN——tensorflow实现

本文介绍了知识图谱的概念、应用和构建流程,重点讲解了有监督的关系抽取任务,特别是PCNN(Piece-Wise-CNN)模型在Python中的TensorFlow实现。PCNN通过关注实体之间的距离和位置信息,有效地提取关系特征,从而进行关系分类。
摘要由CSDN通过智能技术生成

知识图谱( Knowledge Graph)以结构化的形式描述客观世界中概念、实体及其关系,将互联网的信息表达成更接近人类认知世界的形式,提供了一种更好地组织、管理和理解互联网海量信息的能力。上述一大段是我从2018知识图谱发展报告中copy下来的一段话,用普通人能听懂的人话来描述:知识图谱就是把去发现世间万物的之间的联系。 在技术上就是将数据以一个一个的的三元组形式存储起来。

不知道大家有没有这样一种感受,如果你在某一领域的学习了解到很多的知识碎片,却无法将他们关联起来,这些知识碎片并不会加深你对这一领域的认知。而如果你能将他们联系起来,串联成一张知识网,那很有可能你就是这个领域决定的专家。因为你的脑中有这个领域的知识网,你就能知道这个领域的边界在哪。知识图谱就是要将知识串联起来,形成一张知识网。

知识图谱的应用场景:

知识图谱主要分为两类: 通用知识图谱和领域知识图谱。通用知识图谱主要需要知识的广度,而领域知识图谱需要知识具有深度。 + 通用知识图谱最普遍的应用场景就是:搜索引擎, + 领域知识图谱的应用场景则比较丰富多样:司法,医疗,金融,电商等各行各业都可以构建属于自己行业的知识图谱,而这些知识图谱可以用于智能问答,辅助决策,风险规避等。

当然以上只是知识图谱被应用最多的场景,还有一些很有潜力的应用场景,比如将知识图谱和深度学习结合等。知识图谱这个新的,年轻的概念还等着大家去探索更多的应用可能性。

知识图谱的构建简介

这里笔者就不介绍详细版知识图谱构建流程,直接抛出一个简单粗暴版的构建流程。 + 实体抽取,实体链接(两个实体同一个含义需要规整),目前最主流的算法就是CNN+LSTM+CRF进行实体识别。 + 实体间关系抽取,拿到知识图谱最小单元三元组,比较经典算法的就是Piece-Wise-CNN和 LSTM+ Attention 。 + 知识存储,一般采用图数据库(neo4j等)。

但是要注意的是,知识图谱一定要最先定义好构建它是用来干什么,目标业务导向,定义好符合业务逻辑schema层才是最最重要的。有了schema之后接下来的任务就是实体抽取和关系抽取啰,其中关系抽取是把知识点串联成一张知识网的重要过程,所以这里笔者着重介绍一下最近在知识图谱领域很火的有监督的关系抽取任务的一个模型PCNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值