
原创精华:柯西不等式的所有解法
从柯西不等式的变形,我感受到了来自数学世界深深的恶意。
哪些不等式能用柯西不等式来解?
柯西不等式有哪些常见的变形?
整完教材和题库,我们告诉你高考中柯西不等式的所有解法
作为高中数学内容的最后一部分,不等式部分在高考题里的位置也居于最后。选做题二选一,分值不多不少,十分。
很多学生在纠结两道选做题做哪个。这情形就好比,眼瞅着再过两三个月都要上战场了,你现在还在纠结是用AWM还是98K。
我觉的这种纠结很好解决,交给时间吧,等高考结束以后这种纠结自然就消失了。
因为但凡有这种纠结的学生,暴露了一个严重的信息,
这两道题都TM不会啊!
就整套试卷的性价比来说,选择题前八题,填空题前两题(13,14),大题第一题(17)和选做题2选1,是每套试卷里的送分题。
这也是100分以下的考生,拿到试卷后首先解决的几道题。
今天,我们就挑个软柿子,不等式里面的柯西不等式。
不要觉的它很神秘,很难。
恐惧来自未知,当你把所有的题型都做完看完以后,
你觉的,这题,香。
学无止境,学海无涯,本文仅针对高考,对由柯西不等式引申出来的各种二级结论不做过深的探讨。
我们要对付的,仅仅只是高考而已。
第一部分:定理内容

整个表格吧,看着更直观

两点说明:
1. 柯西不等式的形式一定要记清,下面两个式子不要搞混

2. 不等式的方向要搞清楚,这是做题时利用条件的依据。
注意观察,括号内a、b、c、d的幂指数最大的一侧用≥号(重要)!
第二部分:常考题型
柯西不等式考什么题型,这在教材里已经完完整整的告诉你了。
书上给了六道例题:

总结:利用柯西不等式证明多项式乘积,注意不等号大于的那一侧的幂指数总是高的。

总结:利用柯西不等式求函数的最值,注意题干的信息:根式,根式下变量的系数互为相反数

总结:利用柯西不等式证明基本不等式的结论,注意题干信息:分式,已知条件里有等式

总结:利用柯西不等式证明均值不等式的结论,注意不等号大于的那一侧的幂指数总是高的

总结:利用柯西不等式证明不等式,这类题目不用柯西不等式可以解,但用柯西的话可以秒解。

总结,柯西不等式的应用,这类题目的关键在于确定不等号的方向,两个因式乘积如何拼凑出要求的一个因式。
第三部分:题海泛舟
一、直接套公式型
解题思路:直接代入公式即可,注意等式成立的条件.


二、根式下有正负型:
解题思路:题目没给条件但含参数怎么办?还能怎么办,消参啊;有根式怎么办?还能怎么办,平方啊;注意,根式在柯西不等式里一般位于不等式较小的一侧,此类题多让你求最大值。


三、高幂定求低幂型:
解题思路:高幂因式在柯西不等式里位于不等号较大的侧,所以低幂部分有最大值。这里的高幂低幂是相对的,比如二次相对于一次是高幂,而一次相对于根式也算高幂。





四、低幂定求高幂型
解题思路:低幂因式在柯西不等式里位于不等号较小的一侧,所以高幂部分有最小值。



五、整式定求分式型
解题思路:一般用分式和条件中的定值整式相乘,既然是相乘,那么分式部分应是位于不等号较大的一侧,故分式通常有最小值。此类题尤其要注意常数的代换。





六、分式定求整式型
解题思路:一般用整式和条件中的定值分式相乘,既然是相乘,那么整式部分应是位于不等号较大的一侧,故整式通常有最小值。(此类题型与第五种情况基本相同)


七、多参数求最值型
解题思路:消参,此类题目一般不会超过2次,参照第三和第四种情况。



八、三角函数及向量型
解题思路:注意数形结合,题干中多半都隐藏着定值,找出来,用了。常见的例如:三角形两边之和小于第三边,正余弦平方和为1,诸如此类。


九、综合型
解题思路:与函数结合,注意等式成立的条件,必要时可考虑多次运用公式。


十、恶意套路型
解题思路:这种题不难,一般都能直接运用公式,但通常会挖一两个小坑……。此类题存在的意义就是让你体会来自数学世界的深深恶意,这类题在这里碰上是你的幸运,在这里没碰上在考试中碰上算你倒霉。


如觉的还有点用,欢迎关注我的公众号,
一个只做数学干货的号:
数学史话(MathsSPA)