高等数学张宇18讲 第九讲 积分等式与积分不等式

例题九

例9.7 设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,且 f ( x ) > 0 f(x)>0 f(x)>0,证明: ∫ a b f ( x ) d x ∫ a b 1 f ( x ) d x ⩾ ( b − a ) 2 \displaystyle\int^b_af(x)\mathrm{d}x\displaystyle\int^b_a\cfrac{1}{f(x)}\mathrm{d}x\geqslant(b-a)^2 abf(x)dxabf(x)1dx(ba)2

  令 F ( x ) = ∫ a x f ( t ) d t ∫ a x 1 f ( t ) d t − ( x − a ) 2 ( a ⩽ x ⩽ b ) F(x)=\displaystyle\int^x_af(t)\mathrm{d}t\displaystyle\int^x_a\cfrac{1}{f(t)}\mathrm{d}t-(x-a)^2(a\leqslant x\leqslant b) F(x)=axf(t)dtaxf(t)1dt(xa)2(axb),则
F ′ ( x ) = f ( x ) ∫ a x 1 f ( t ) d t + 1 f ( x ) ∫ a x f ( t ) d t − 2 ( x − a ) = ∫ a x [ f ( x ) f ( t ) + f ( t ) f ( x ) − 2 ] d t ⩾ ∫ a x ( 2 − 2 ) d t = 0. \begin{aligned} F'(x)&=f(x)\displaystyle\int^x_a\cfrac{1}{f(t)}\mathrm{d}t+\cfrac{1}{f(x)}\displaystyle\int^x_af(t)\mathrm{d}t-2(x-a)\\ &=\displaystyle\int^x_a\left[\cfrac{f(x)}{f(t)}+\cfrac{f(t)}{f(x)}-2\right]\mathrm{d}t\geqslant\displaystyle\int^x_a(2-2)\mathrm{d}t=0. \end{aligned} F(x)=f(x)axf(t)1dt+f(x)1axf(t)dt2(xa)=ax[f(t)f(x)+f(x)f(t)2]dtax(22)dt

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值